

Date: 2011/04/26

Specifications for Approval

Customer	: Mc ' Tronic	
Model name	: GY1206N0FVE6G	REV: B
Description	: LCM (Y1206N0FVE6 – DD	682 – B0417B)

LCD Specification: LCD (SDD682 - 74 - 8222 - 110409 - 1)

ISSUE	ENG	QA	APPROVAL
Lily Li	Bose Xie	Wallace	Michael

	Accept Reject Comment:
Customer Approval	
	Approved by:

Revision	Revision Date	Page	Contents
A B	2011/03/12 2011/04/26		Initial Release and Issue Full Specification. Improve the display effect .

REVISION RECORD (MODEL NO.: GY1206N0FVE6G)

- *** CONTENTS**
- 1. FEATURES
- 2. MECHANICAL SPECIFICATIONS
- 3. ELECTICAL SPECIFICATIONS
- 4. POWER SUPPLY
- 5. ELECTRO-OPTICAL CHARACTERISTICS
- 6. INTERFACE PIN FUNCTION
- 7. COMMAND LIST
- 8. TIMING CHARACTERISTICS
- 9. QUALITY SPECIFICATION
- 10. RELIABILITY
- 11. HANDLING PRECATION
- 12. OUTLINE DIMENTION
 - ※ ANNEX : 1. SAMPLES OUTGOING INSPECTION REPORT2. REVISION RECORD

MODEL	GY1206N0FVE6G	1/18	PRODUCT SPECIFICATIONS	REV: B

1. FEATURES

The features of LCD are as follows

* Display mode	: FSTN, Negative, Transmissive
* Color	: Display dot : White
	Background: Black
* Display Format	: 128Dots × 64Dots graphic
* IC	: Sitronix ST7565R-G
* Interface Input Data	: 8-Bit Parallel 6800 / 4-Line SPI MPU Interface
* Driving Method	: 1/65 Duty, 1/9 Bias
* Viewing Direction	: 6 O'clock
* Backlight	: LED (Red)

* LCM technological conditions: RoHS

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	67.15(W) X 63.075(H) X 5.3(T)	mm
Viewing Area	61.0(W) X 31.4(H)	mm
Effective Display Area	57.57(W) X 28.77(H)	mm
Number of Dots	128 X 64 Dots	-
Dot Size	0.42(W) X 0.42(H)	mm
Dot Pitch	0.45(W) X 0.45(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1. Absolute Maximum Ratings (Vss=0V)

	ltem	Sym	hal	Standard Value				
	item		Symbol		Тур.	Max.	Ur	hit
S	upply Voltage For Logic	Vdd		0.3	-	5.0	V	/
Sup	ply Voltage For LCD Drive	V0,VOUT		0.3	-	18.0	V	/
	Operating Temp.	Тор		-20	-	+70	°(2
	Storage Temp.	Тѕт		-30	-	+80	°(0
	Static Electricity	Be sue that you are ground when handing LCM						
ODEL	GY1206N0FVE6G	2/18	PRO	DUCT S	SPECIF	ICATIONS		RE

3. ELECTRICAL SPECIFICATIONS (Continued)

3-2-1. Electrical Characteristics

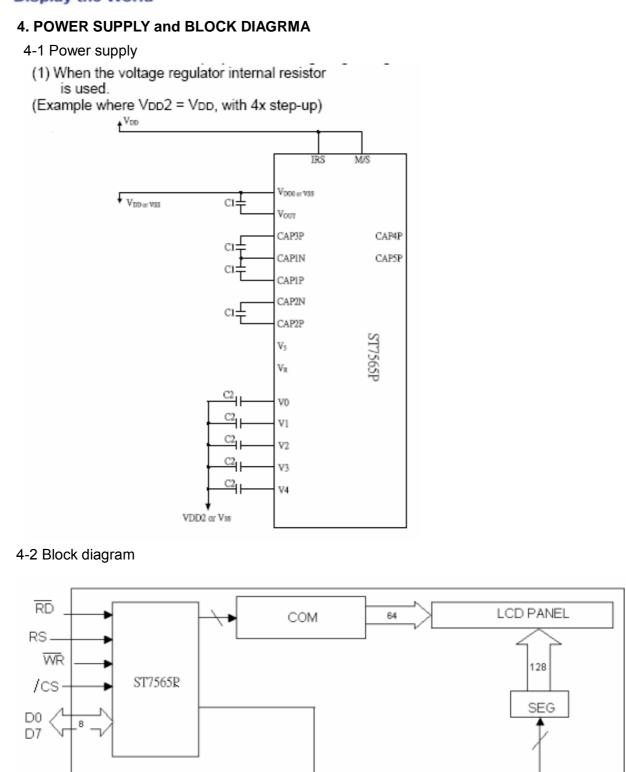
Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Supply Voltage For Logic		Vdd - Vss	-	1.8	3.3	3.3	V
Supply Voltage	For LCD	V0-Vss	-	8.0	8.3	8.6	V
	"H" Level	V IH		0.8Vdd	-	Vdd	V
Input Voltage	"L" Level	VL	-	Vss	-	0.2VDD	V
	"H" Level	V _{OH}	I _{OUT} = -0.5mA	0.8Vdd	-	Vdd	V
Output Voltage	"L" Level	V _{OL}	I _{OUT} = 0.5mA	Vss	-	0.2VDD	V
Current Consumption		I _{DD}	$V_{IN} = V_{DD}$	-	1.50	3.0	mA
AVG. X of 1931 C.I.E (LCM)		Х	Dots All off	0.65	0.69	0.73	-
AVG. Y of 1931 C.I.E (LCM)		Y		0.26	0.30	0.34	-
		L	Dots All on	20	-	40	cd/m ²
Luminous Intensit		L	Dots All off	0	5.0	10.0	cd/m ²

NOTE: 1) Duty ratio=1/65, Bias=1/9 2) Measured in Dots ON-state

3-3.BACKLIGHT

3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max	Unit
Forward Current	IF	Ta= 25 ℃	-	-	140	mA
Reverse Voltage	VR	1a- 25 C	-	-	10	V
Power Dissipation	PD	Ta= 25 ℃	-	-	574	mW


3-3-2. Opto-electronic Characteristics

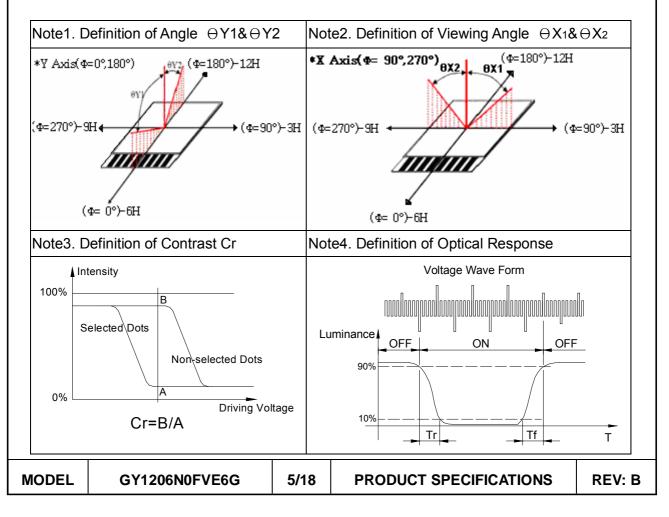
VF	IF= 70mA				
		3.7	3.9	4.1	V
IR	VR=10V	-	-	70	uA
LV	IF=70mA	70	-	-	cd/m²
λp	IF=70mA	620	-	630	nm
Emitting Color IF=70mA Red					
	LV λ p	LV IF=70mA λ p IF=70mA	LV IF=70mA 70 λ p IF=70mA 620 IF=70mA 620	LV IF=70mA 70 - λ p IF=70mA 620 - IF=70mA F Ref	LV IF=70mA 70 - - λ p IF=70mA 620 - 630 IF=70mA Red Red Red

M	OC)EI	L

MODEL

4/18

GY1206N0FVE6G


REV: B

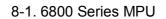
PRODUCT SPECIFICATIONS

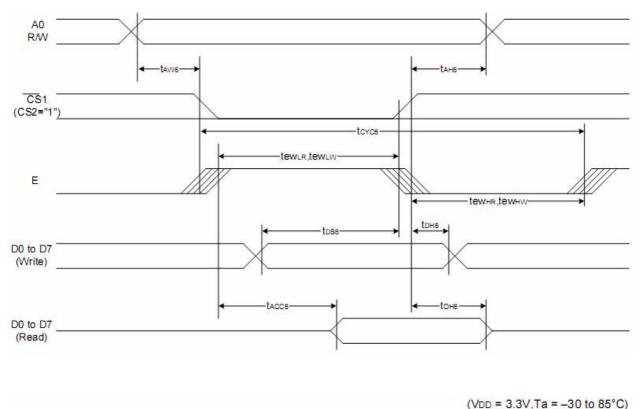
5. ELECTRO – OPTICAL CHARACTERISTICS

Ite	m	Symbol	Temp.	Min.	Тур.	Max.	Unit	Conditions	Note		
	Φ=0°	θ1			38						
Viewing	Φ=180°	⊖2	25 ℃		35		Dog		1.0		
Angle Cr <u>></u> 2	Φ=90°	⊖3	250		40		Deg.	-	1,2		
	Φ=270°	θ4			38						
Viev	Viewing Direction			6 O'clock							
Contrast Ratio		Cr	25 ℃	2.0	7.08	7.38	-	$\Theta = 0^{\circ}$ $\Phi = 0^{\circ}$	3		
Respo	Response		25 °C	-	338	500	ms	⊖=0°	4		
Time(rise)	Tr	0 °C	-	1250	1650	1115	$\Phi = 0^{\circ}$	4		
Respo		Tf	25 °C	-	218	500	me	⊖= 0°	4		
Time	(fall)	11	0 °C	-	1250	1650	ms	$\Phi = 0^{\circ}$	4		

6. INTERFACE PIN FUNCTION

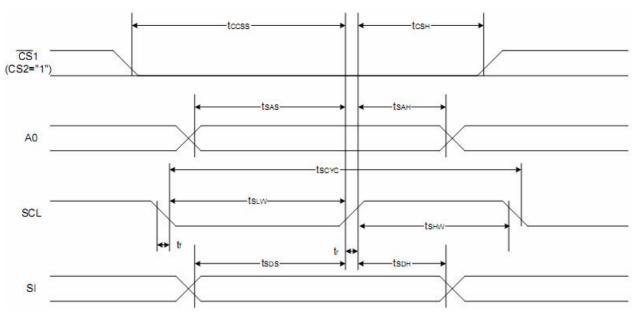
Pin NO.	Symbol	1/0	Functions
1	/CS	I	This is the chip select signal.
2	/RES	Ι	When RES is set to "L", the setting are initialized.
3	A0	Ι	This is connect to the least significant bit of the Norman MPU address bus, and it determines whether the data bits are data or a command.
4	WR(/WR)	I	The data bus are latched at the rising edge of the WR signal
5	RD(/RD)	I	The data bus is in output status when this signal is "L"
6~13	D0~ D7	I/O	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus.
14	V _{DD}	Power supply	Power supply
15	V_{SS}	Power supply	Ground
16	V _{OUT}	0	DC/DC voltage converter. Connect a capacitor between this terminal and v_{ss} or VDD
17	NC	/	No connect
18	CAP3+	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
19	CAP1-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.
20	CAP1+	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
21	CAP2+	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
22	CAP2-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.
23~27	V4~ V0	Power supply	This is a multi-level power supply for the liquid crystal drive.
28	P/S	I	This pin configures the interface to parallel mode or serial mode. P/S="H":Parallel data input/output. P/S="L":Serial data input.
IODEL	GY12	206N0FV	ZE6G6/18PRODUCT SPECIFICATIONSREV:




7. COMMAND LIST

Command				Cor	nma	ind C	Code					Function
	A0	/RD	/WR	D7	D6				D2			
1) Display ON/OFF	٥	1	0	-	0	1	Ð	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
2) Display start line set	ο	1	Ð	Ð	1	DI	spia	y st	art ai	didire	95	Sets the display RAM display star line address
3) Page address set	o	1	0	1	0	1	1	Pa	ipe a	ddin	ess	Sets the display RAM page address
4) Column address set	0	1	0	0	в	0	1				cant	Sets the most significant 4 bits of
upper bit Column address set lower bit	٥	1	D	0	0	٥	0	Lea	est si	gnif	iress icant iress	the display RAM column address. Sets the least significant 4 bits of the display RAM column address.
5) Status read	0	0			84	atus		0			0	Reads the status data
5) Olsplay data write	1	1	0			1	Ninb	e da	is.			Writes to the display RAM
7) Olsplay data read	1	0	1				Rea	d da	ta			Reads from the display RAM
8) ADC select	o	1	0	1	D	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
9) Display normal/ reverse	٥	1	0	1	D	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
10) Display all points ON/OFF	٥	1	0	1	Θ	1	0	0	1	0	0 1	Display all points 0: normal display
11) LCD blas set	٥	1	0	1	D	1	0	0	0	1	0	1: all points ON Sets the LCD drive voltage blas ratio 0: 1/9 blas, 1: 1/7 blas (ST7565P)
12) Read/modify/write	٥	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
13) End	٥	1	Ю		1	1	0	1	1	1	0	Clear read/modify/write
14) Reset	٥	1	B	1	1	1	0	0	0	1	0	Internal reset
15) Common output mode select	o	1	0	1	1	٥	0	0 1	•		•	Select COM output scan direction 0: normal direction 1: reverse direction
16) Power control set	0	1	0	0	B	1	0	1		era ide	ting	Select Internal power supply operating mode
17) V0 voltage regulator Internal resistor ratio set	0	1	0	0	D	1	0	0	Re	sist tio	or	Select Internal resistor ratio(Rb/Ra) mode
18) Electronic volume mode set Electronic volume register set	٥	1	0	1 0	0			0 nic v	0 olun	0 ne v	1 alue	Set the Vo output voltage electronic volume register
19) Static Indicator ON/OFF	0	1	0	1	B	1	٥	1	1	0	0 1	0: OFF, 1: ON
Static Indicator register set				0	0	0	0	0	0	D	Mode	Set the flashing mode
20) Booster ratio set	٥	1	D	1 0	1 0	1 0	1 0			ste	0 p-up slue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 5x
21) Power saver												Display OFF and display all points ON compound command
22) NOP	ο	1	0	1	1	1	D	0	0	1	1	Command for non-operation
23) Test	0	1	Ð		1	1					1	Command for IC test. Do not use this command
ODEL GY1206	5N0	FVF	6G		7/1	8		PR		UC	T SP	

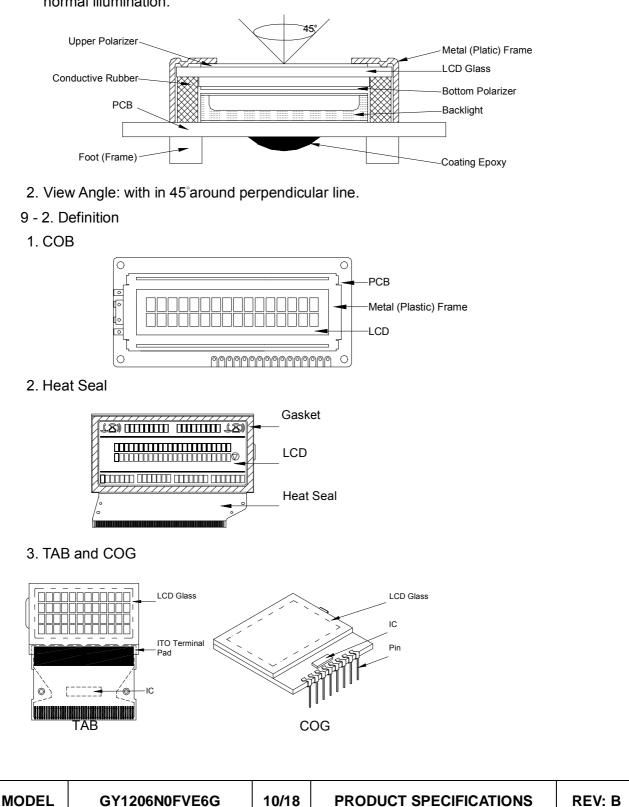
8.TIMING CHARACTERISTICS


146	(C)			(VDD - 0.0V		0000
Item	Signal	Symbol	Condition		ting	Units
(4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	and the second			Min.	Max.	10343503
Address hold time		tah6		0		
Address setup time	A0	taw6		0	—	
System cycle time		tcyc6		240	_	
Enable L pulse width (WRITE)	WR	tewlw		80	<u> </u>	
Enable H pulse width (WRITE)	VVIX	tewnw		80		
Enable L pulse width (READ)	RD	tewlr		80		ns
Enable H pulse width (READ)	- KU	tewnr		140	51. 52.	
WRITE Data setup time		tDS6		40	<u> </u>	
WRITE Address hold time	DO to DZ	tdH6		0	-	
READ access time	D0 to D7	tACC6	CL = 100 pF	-	70	
READ Output disable time	7	toнs	CL = 100 pF	5	50	

MODEL	G
	-

8.TIMING CHARACTERISTICS

8-2. 4-Line SPI Interface


Item	Signal	Symbol	Condition	Rat	Units	
Item	Signal	Symbol	Condition	Min.	Max.	Units
4-line SPI Clock Period		Tscyc		50		
SCL "H" pulse width	SCL	Tshw		25		
SCL "L" pulse width		Tslw		25		
Address setup time	A0	TSAS		20	-	
Address hold time	AU	Tsah		10	-	ns
Data setup time	SI	Tsds		20		
Data hold time	51	Тѕрн		10		
CS-SCL time	CS	Tcss		20	-	
CS-SCL time	CS	Tcsh		40		

MODEL	GY1206N0FVE6G	9/18	PRODUCT SPECIFICATIONS	REV: B

9. QUALITY SPECIFICATION

- 9 1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.

9. QUALITY SPECIFICATION (Continued)

- 9-3. Sampling Plan and Acceptance
- 1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance

Major defect:	AQL = 0.25
Minor defect:	AQL = 0.65

9-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Stand	ards
Minor	Component marking not read	able	Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing wrong component or wrong orient		Reject
Minor	Component position shift x soldering p x \rightarrow x x \rightarrow x		Reject Reject
Minor	Component tilt compone D soldering pad	ent Y > 1/3D	Reject
Minor	Insufficient solder component	ад <u>θ ≤</u> 20° РСВ	Reject
EL	GY1206N0FVE6G 11/18	PRODUCT SPECIFICATIONS	REV

9. QUALITY SECIFICATION (Continued)

9-4. Criteria (Continued)

3. Metal (Plastic) Frame

Defect	Inspection Item	h	nspection Standa	rds			
Major	Crack / breakage	Any	/where	Reject			
		W	L	Acceptable of Scratch			
		w<0.1mm	Any	Ignore			
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2			
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1			
		w <u>></u> 0.3mm	Any	0			
		Note : 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (not visible) can be ignored .					
				Acceptable of Dents / Pricks			
		Φ <	1.0mm	2			
	Frame Dent , Prick	1.0<	1				
Minor	$\Phi = \frac{L + W}{2}$	1.5r	0				
	2	/ pricks with dis	to any two dents 5mm side of frame (no				
Minor	Frame Deformation	Excee	d the dimension of	drawing			
Minor	Metal Frame Oxidation		Any rust				

4. Flexible Film Connector (FFC)

GY1206N0FVE6G

MODEL

Defect	Insp	ection Item	Inspection Standards			
Minor	Tilte	d soldering	Within the angle +5 $^{\circ}$	Acceptable		
Minor	Uneven solder joint /bump			Reject		
Minor	Hole	$\Phi = \frac{L + W}{2}$	Expose the conductive line	Reject		
$\Psi = \Psi$	$\Psi = \frac{1}{2}$	Φ > 1.0mm	Reject			
Minor	Position shift $Y \xrightarrow{-\psi} -\psi$		Y > 1/3D	Reject		
Minor $-\pi$	X > 1/2Z	Reject				

12/18

PRODUCT SPECIFICATIONS

REV: B

9. QUALITY SPECIFICATION (Continued)

9-4. Criteria (Continued)

Defect	Inspection	Item	Inspection Standards				
Major	Screw missing	g/loosen		Reject			
Minor	Screw oxic	lation	Any rust		Reject		
Minor	Screw defor	mation	Difficult to accept screw	driver	Reject		
6. Heat sea	al 、TCP 、FPC						
Defect	Inspection	Item	Inspection Sta	ndards			
Major	Scratch expose con	nductive layer			Reject		
Minor	HS Hole $\Phi = \frac{L+1}{2}$	<u>W</u> 2	⊕> 0.5mm	Reject			
Major	Adhesion strength		Less than the specification	ation	Reject		
Minor	Position shift $Y \xrightarrow{- \frac{1}{2}} \xrightarrow{- \frac{1}{2}}$	Z _K	Y > 1/3D	Reject			
WIIITO			X > 1/2Z	Reject			
Major	Conductive line bre	ak			Reject		
7. LED Ba	cking Protective Film	and Others					
Defect	Inspection Item	Inspection Standards					
		Acceptable number of units					
			⊕ <u><</u> 0.10mm		Ignore		
1							

		⊕ <u><</u> 0.10mm	Ignore		
		0.10<⊕ <u><</u> 0.15mm	2		
Minor LED dirty, prick		0.15<⊕ <u><</u> 0.2mm	1		
		⊕>0.2mm	0		
		The distance between any two spots should be <u>>5mr</u> Any spot/dot/void outside of viewing area is acceptab			
Minor	Protective film tilt	Not fully cover LCD	Reject		
Major	COG coating	Not fully cover ITO circuit	Reject		

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

MODEL GY1206N0FVE6G 13/18	PRODUCT SPECIFICATIONS REV: B
---------------------------	-------------------------------

9. QUALITY SPECIFICATION (Continued)

9-4. Criteria (Continued)

9. Inspection Specification of LCD

MinorLinear Defect* Glass Scharter Polarizer PrickedTiber and Linear material $Lic<5$ L<3	Defect	Insp	pect Item				Ins	pection		Standard	S	
MinorLinear Defect* Polarizer Scratch * Fiber and Linear materialLesLesLesAnMinorBlack Spot and Polarizer Pricked* Foreign material oparizer or glass and glass transparant force w Polarizer Pricked* Foreign material oparizer or glass and glass transparant force $\Phi \leq 0.1$ $\Phi \leq 0.15$ $0.15 < \Phi \leq 0.2$ $\Phi \leq 0.10$ $0.15 < \Phi \leq 0.2$ $\Phi \leq 0.10$ $0.15 < \Phi \leq 0.2$ $\Phi \leq 0.3$ $0.3 < \Phi \leq 0.5$ $\Phi \leq 0.5$ $0.5 < \Phi \leq 0.2$ $ACC.MinorWhite Spotand Bubble inpolarizerand glass and glass orand glass\Phi = 0.10\Phi \leq 0.100.10 < \Phi \leq 0.200.20 < \Phi \geq 0.250.20 < \Phi \leq 0.25$			* Glass Sorat	tch	W		_		0	.03 <w<u><0.0</w<u>	5 \	N>0.05
MinorLinear Detect Imaterial* Fiber and Linear Imaterial $ACC.11ReightNoteMinor* Foreign materialbetween glass andpolarizerPricked* Foreign materialbetween glass andpolarizer or glassand glass* Polarizer hole orprotuberance byexternal force\Phi \leq 0.10.1 \leq \Phi \leq 0.15 < 0.15 \leq \Phi \leq 0.2\Phi \geq 0.15 < 0.15 \leq \Phi \leq 0.2\Phi \geq 0.15 < 0.15 < 0.15 \leq \Phi \leq 0.2\Phi \geq 0.15 < 0.15 < 0.15 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 $					-		L٩	<5		L<3		Any
Minor* Foreign material between glass and polarizer Pricked* Foreign material between glass and polarizer or glass and glass * Polarizer hole or protuberance by external force $0.1 < 0.2 < 0.15 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0$	Minor	Linear Defect	* Fiber and L					1		1		Reject
MinorBlack Spot and Polarizer Prickedbetween glass and polarizer nog glass * Polarizer hole or protuberance by external forco * Unobvious transparant foreign material between glass and glass or glass and glass or glass and glass or glass and glass or glass and glass or and glass $\Delta CC.$ $3EA / 100mm²$ 2 110MinorWhite Spot naterial between polarizer and glass \Rightarrow $ACC.$ \oplus $\Phi \leq 0.3$ $0.3 < \Phi \geq 0.5$ $0.5 < 0.5 < 0.5 < 0.5 < 0.6 ACC.\Delta CC.3EA / 100mm²0.3 < \Phi \geq 0.50.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <$			material		Note	L is the	e len	igth and V	V is tł	ne width of	the de	efect
MinorPolarizer Prickedand glass * Polarizer hole or protuberance by external force external force material between glass and glass or glass and glass or and glass			* Foreign ma	terial	Φ			0.1<⊕ <u><</u> (0.15	0.15<⊕ <u><</u> 0	.2	⊕>0.2
MinorPolarizer Prickedand glass * Polarizer hole or protuberance by external forceNote ϕ is the average diameter of the defect. Distance between two defects > 10mm.MinorWhite Spot and Bubble in polarizer* Unobvious transparant foreign material between glass and glass or glass and glass or glass and glass or and glass $\phi = 0.3$ ACC ACC $0.3 < \phi \le 0.5$ ACC ACC ACC $0.3 < \phi \le 0.5$ ACC ACC ACC ACC $0.3 < \phi \le 0.5$ ACC ACC ACC ACC ACC $0.0 < \phi \le 0.5$ ΔCC ACC $ACCCACCACCCCACCCACCCACCCCACCCACCCCACCCCACCCCACCCCACCCCCCACCCCACCCCCACC$		Black Spot and	between glass	s and		3EA 100m	/ m²	2		1		0
MinorWhite Spot and Bubble in polarizertransparant foreign material between glass and glass or glass and polarizer and glass $ACC.NOL3EA / 100mm^210MinorSegmentDefectaccellpolarizerbcloorellmaterial betweenbetween polarizerand glass\phi is the average diameter of the defect.Distance between two defects > 10mm.MinorSegmentDefect\psi\psi\phi \leq 0.100.10 < 0.20 < 0.20 < \phi \leq 0.25ACC.100mm^2\phi < 0.20 < 0.20 < \phi \leq 0.25ACC.Distance between two defect is 10mm.MinorProtuberantSegment\psi\psi = (L+W)/2\psi\psi = (L+W)/2\psi\psi = 0.100.10 < 0.20 < 0.20 < \phi \leq 0.25\psi = 0.20MinorProtuberantSegment\psi\psi = (L+W)/2\psi\psi = 0.100.10 < \phi \leq 0.200.20 < 0.20 < \phi \leq 0.25\psi = 0.20MinorAssemblyMis-alignment\psi\psi = (L+W)/2\psi\psi = (L+W)/2\psi\Delta CC.ACC.ACC.ACC.0.10 < \phi \leq 0.200.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.$	Minor	Polarizer	and glass * Polarizer ho protuberance external force	ole or	Note			•				
MinorWhite Spot and Bubble in polarizermaterial between glass and glass or glass and polarizer * Air protuberance between polarizer and glassNote $3EA / 100mm^2$ 10MinorSegment Defect ψ <t< td=""><td></td><td></td><td></td><td></td><td>Φ</td><td></td><td>Φ<u><</u>(</td><td>0.3</td><td>0.3</td><td>8<⊕<u><</u>0.5</td><td>0.</td><td>5<Φ</td></t<>					Φ		Φ <u><</u> (0.3	0.3	8<⊕ <u><</u> 0.5	0.	5 <Φ
Minorand Bubble in polarizerglass and polarizer s Air protuberance between polarizer and glassNote Φ is the average diameter of the defect. Distance between two defects > 10mm.MinorSegment Defect $\Psi = 0.10$ $\Psi = 0.10$ $0.10 < \Phi \le 0.20$ $ACC.$ $0.20 < \Phi \le 0.25$ $0.20 < \Phi \le 0.25$ $\Phi = 0.20$ $\Phi = 0.20$ $ACC.$ $0.20 < \Phi \le 0.20$ $0.20 < \Phi \le 0.25$ $\Phi = 0.20$ $\Phi = 0.20$ $ACC.$ $0.20 < \Phi \le 0.20$ $\Phi = 0.10$ $\Phi = 0.20$ 2 </td <td></td> <td>White Spot</td> <td>material betwe</td> <td>een</td> <td></td> <td>3EA</td> <td>/ 10</td> <td>00mm²</td> <td></td> <td>1</td> <td></td> <td>0</td>		White Spot	material betwe	een		3EA	/ 10	00mm ²		1		0
MinorSegment Defect $ACC.$ $IOmm^2$ $ACCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCC.$ $IOMM^2$ $ACCCCC.$ $IOMM^2$ $ACCCCC.$ $IOMM^2$ $ACCCCC.$ $IOMM^2$ $ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	Minor	and Bubble in	glass and glass or glass and polarizer * Air protuberance between polarizer		Note	Φ is the average diameter of the defect.						
MinorSegment DefectW is more than 1/2 segment widthRefMinorProtuberant Segment $\psi = \frac{L + W}{2}$ Distance between two defect is 10mmMinorProtuberant Segment $\psi = (L+W)/2$ Minor $\psi = (L+W)/2$ $\psi = 0.10$ $0.10 < \phi \le 0.20$ Minor $\psi = (L+W)/2$ $\psi = 0.10$ $0.10 < \phi \le 0.20$ Minor $\psi = (L+W)/2$ $\psi = 0.10$ $0.10 < \phi \le 0.20$ Minor $\psi = (L+W)/2$ $\psi = 0.10$ $0.10 < \phi \le 0.20$ Minor $\psi = (L+W)/2$ $\psi = 0.10$ $0.10 < \phi \le 0.20$ MinorAssembly Mis-alignment $\psi = (L+W)/2$ W MinorAssembly Mis-alignment $\psi = 0.10$ $0.4 < B \le 1.0$ mmMinorStain on LCD Panel Surface $\psi = 0.10$ U MinorStain on LCD Panel SurfaceAccept when stains can be wiped lightly with a soft or a similar one. Otherwise, judged according to 					Φ			0.10<Φ <u>-</u>	<u><</u> 0.20	0.20<Φ <u><</u>	<u><</u> 0.25	⊕>0.25
MinorDefectNote $u = \frac{L + W}{2}$ Distance between two defect is 10mmMinorProtuberant Segment $u = (L + W)/2$ $u = (L + W)/2$ $u = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorProtuberant Segment $u = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorAssembly Mis-alignment $u = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorAssembly $Mis-alignment$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorAssembly $Mis-alignment$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorStain on LCD Panel Surface $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ $u = (L + W)/2$ $U = (L + W)/2$ MinorStain on LCD Panel SurfaceAccept when stains can be wiped lightly with a soft or a similar one. Otherwise, judged according to above items: "Black spot" and "White Spot"						3EA 100m	/ m²	2		1		0
MinorProtuberant SegmentImage: Constraint of the sector of th	Minor			2		W is more than 1/2 segment width Reject						
MinorProtuberant SegmentImage: the segmentImage: the s					Note		2			fect is 10m	m	
MinorProtuberant SegmentImage: the segmentImage: the s					Φ	⊕<0 .′	Φ<0.10 0.10<Φ<		<0.20	0.20< ₫<	<0.25	⊕>0.2 5
Segment $u = (L + W)/2$ $ACC. 3EA / NO. 100mm^2$ $V = 0.2$ $V = 0.2$ MinorAssembly Mis-alignment $u = (L + W)/2$ $ACC. 3EA / NO. 100mm^2$ 2 1 BB = 0.4mm $0.4 < B \le 1.0mm$ $B > 1.0m$ B-AB-A < 1/2B	Minor					· · · · ·		W <u><</u> 1/2	2 Seg WV/2		Seg	Ignore
Minor Assembly Mis-alignment Image: Constraint of the second se		Segment	Φ = (L + W) /	2		3EA 100mi	/ m²	_	.2		.2	0
Minor Assembly Mis-alignment Image: Constraint of the system B B = 0.4mm 0.4 <b 1.0mm<="" th="" ≤=""> B > 1.0m B-A B-A B-A A B-A Constraint of the system Constrain Constraint of the system <)	1. Seg							
Minor Assembly Mis-alignment Image: Assembly B-A B-A B-A B-A B-A B-A Compare the transmission of transmissing transmission of transmission of transmiss							B<	0.4mm	0.4<	B <u><</u> 1.0mm	B>′	1.0mm
Minor Mis-alignment Image Judge Acceptable Acceptable Acceptable Acceptable Minor Stain on LCD Panel Surface Stain on LCD Accept when stains can be wiped lightly with a soft or a similar one. Otherwise, judged according to above items: "Black spot" and "White Spot"		Assembly						-				-
Minor Stain on LCD Panel Surface Accept when stains can be wiped lightly with a soft or a similar one. Otherwise, judged according to above items: "Black spot" and "White Spot"	Minor		-	-A		-	Acc	ceptable	Ac	ceptable	Acc	eptable
Minor Stain on LCD Panel Surface Accept when stains can be wiped lightly with a soft or a similar one. Otherwise, judged according to above items: "Black spot" and "White Spot"					2. Dot	Matrix						<u> </u>
Minor Panel Surface or a similar one. Otherwise, judged according to above items: "Black spot" and "White Spot"]]								Reject
DEL GY1206N0FVE6G 14/18 PRODUCT SPECIFICATIONS R	Minor				ora	similar	one	e. Otherw	/ise,	judged ac		
DEL GY1206N0FVE6G 14/18 PRODUCT SPECIFICATIONS R												
	DEL	GY1206N0	FVE6G	14/18	3	PROD	DUC	CT SPE	CIFIC	CATIONS	;	REV:

10. RELIABILITY

NO.	ltem	Condition	Criterion		
1	High Temperature Operating	70℃, 96Hrs			
2	Low Temperature Operating	-20℃, 96Hrs			
3	High Humidity	60℃, 90%RH, 96Hrs			
4	High Temperature Storage	80℃, 96Hrs	No defect in cosmetic		
5	Low Temperature Storage	-30℃, 96Hrs	and operational function allowable.		
		Random wave	Total current Consumption should		
		10 ~ 100Hz	be below double of initial value.		
6	Vibration	Acceleration: 2G			
		60 Minute			
		-10℃ to 25℃ to 50℃			
7	Thermal Shock	(60Min) (15Min) (60Min)			
		10Cycles			
6		Contract Discharge Voltage: +1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times		
8	ESD Testing	Air Discharge Voltage: +1 ~ 8kV and –1 ~ -8kV	-at every discharging voltage cycle. The voltage gap is 1kV.		

Note: 1) Above conditions are suitable for GOLDENTEK standard products.

2) For restrict products, the test conditions listed as above must be revised.

MODEL	GY1206N0FVE6G	15/18	PRODUCT SPECIFICATIONS	REV: B

11. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichlorotrifloroethane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Ketone
- Aromatics
- (3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.

- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.

MODEL	GY1206N0FVE6G	16/18	PRODUCT SPECIFICATIONS	REV: B

11. HANDLING PRECAUTION (Continued)

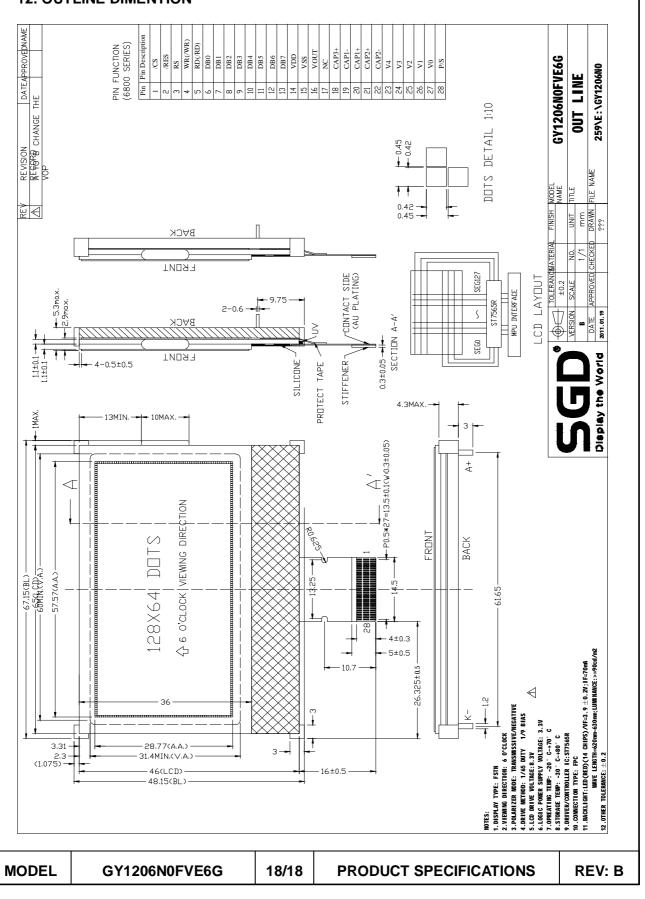
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them.

However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.

- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 80%RH or less is required.

(6) Storage


In the case of storing for a long period of time (for instance ,for years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety
 - It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.
 - Which should be burned up later.
 - When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

MODEL	GY1206N0FVE6G	17/18	PRODUCT SPECIFICATIONS	REV: B

12. OUTLINE DIMENTION

SAMPLE OUTGOING INSPECTION REPORT (LCM)

Data: 2011/04/26

NO.: QAB04017

									1			
Customer Product NO.			0.	C	Driving Voltage Testin			g Condition G		Quantity		
高	雄富相		GY12	06N0F\	/E6G		VOP	: 8.3V		25℃ 8Pcs		
						Ins	spectio	on Result				
Items Specification												
Displ	ay Mode	\bigcirc /	W/BN	lode		B/WN	Node		w Mode	OBlue Mode	e () Gray Mode
Polar	izer Type	\bigcirc	Reflecti	ve) Tr	ansflective	!	Transr	nissive	9
	ewing ection	0;	3 O'cloo	ck	•	6 O'c	lock		○ 9 O'c	lock C) 12 C)'clock
	I					Elect	rical /	Appearanc	ce			
I	tem		Inspe	ection N	Nethod			Specifica	ition	Ins	spection Result	
Арр	earance		Spot	Gauge	Caliper	aliper Final Inspection			n Criteria	a OK		⊖ NG
Ele	ectrical		L	CM Tes	ster		Product Specification			• 0	К	⊖ NG
Pa	attern		L	CM Tes	ster		Drawing			• 0	к	⊖ NG
					C	Dimens	sion / S	upply Cur	rent	I		
ltem	Spec.(m	m)	NO.1	NO.2	NO.3	NO.4	NO.5	Res	sult		Fig.	
L1	67.15 <u>+</u> 0	.2	67.08	67.11	67.13	67.10	67.07	• ОК	⊖ NG			
L2	14.5 <u>+</u> 0.	3	14.51	14.59	14.50	14.53	14.48	в • ок	⊖ NG		u	
W1	48.15 <u>+</u> 0	.2	48.17	48.12	48.20	48.19	48.18	в 🛛 ОК	⊖ NG	- 128×6 ≽	4 DOTS	FRDNT BACK
W2	16.0 <u>+</u> 0.	5	16.13	16.17	16.22	16.25	16.15	• ОК	⊖ NG			
Т	5.3mm N	lax	5.01	4.99	4.91	5.03	4.93	• ок	⊖ NG			
IDD	3.0mA M	ax	1.50	1.50	1.50	1.50	1.50	• ОК	⊖ NG		- L2	
	signed		EL			hecke		/		Approved		Wallace
De	Signed		EL	11 N		TECKE	ŭ	1				VValiaCC

Doc. NO.: F10018A

.