

DATA IMAGE CORPORATION

LCD Module Specification

ITEM NO.: GM322404FFSWBG02

Table of Contents

1.	COVER & CONTENTS ·····	1
2.	RECORD OF REVISION ······	2
3.	GENERAL SPECIFICATIONS ······	3
4.	ABSOLUTE MAXIMUM RATINGS ·····	4
5.	ELECTRICAL CHARACTERISTICS ······	6
6.	ELECTRO-OPTICAL CHARACTERISTIC ······	6
7.	TIMING CHARACTERISTICS ······	9
8.	PIN CONNECTIONS ······	12
9.	POWER SUPPLY ·····	12
10.	BLOCK DIAGRAM ·····	13
11.	QUALITY ASSURANCE ·····	14
12.	LOT NUMBERING SYSTEM ······	18
13.	LCM NUMBERING SYSTEM ·····	18
14.	PRECAUTIONS IN USE LCM ······	19
15.	OUTLINE DRAWING ·····	20
16.	PACKAGE INFORMATION ·····	21

Customer Companies	R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.
	JACK	ERIC	KEN	HUANG
Approved by	Version:	Issued Date:	Sheet Code:	Total Pages:
	С	2008/1/24		21

Rev	Date	Item	Page	Comment
А	15/MAY/06			New Release.
В	4/Dec/07	5	6	Modify: ELECTRICAL CHARACTERISTICS
С	24/JAN/08	5	6	Add: $I_{VO} = 0.56$ mA

3. GENERAL SPECIFICATION

Display Format :	320 (W) \times 240 (H) dots
Dots Size :	0.33 (W) \times 0.33 (H) mm
View Area :	122 (W) × 92 (H) mm
Outline Dimensions :	167 (W) \times 109 (H) \times 11.5 (T) mm Max.
Weight :	250g max.
LCD Type & Background Color:	STN STN VFSTN Blue Gray Yellow
Polarizer mode :	Reflective V Transflective
	Transmissive Negative
View Angle :	V 6 O'clock 12 O'clock Others
Backlight :	VLED EL CCFL
Backlight Color :	Yellow green Amber Blue Green
	V White Others
Driver :	NT7086
Temperature Range :	NormalVOperating0 to 50°COperating-20 to 70°CStorage-20 to 70°CStorage-20 to 70°CStorage

Pixel Color: Dark Blue, with temp. compensation.

REMARK:

Our components and processes are compliant to RoHS standard

4. ABSOLUTE MAXIMUM RATINGS

4.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

			Vss=0V,	$Ta = 25^{\circ}C$
Item	Symbol	Min.	Max.	Unit
Supply Voltage (Logic)	VDD-VSS	-0.3	7	V
Supply Voltage (LCD Driver)	Vdd-V _O	0	30	V
Input Voltage	VI	-0.3	Vdd+0.3	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Tstg	-30	80	°C

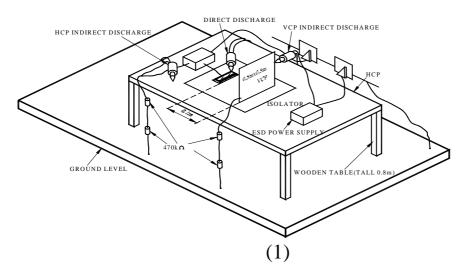
4.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

Item	Operating		Sto	rage	Comment	
nem	(Min.)	Max.)	(Min.) (Max.)		Comment	
Ambient Temp	-20	70	-30	80	Note (1)	
Humidity	Note	Note (2)		te(2)	Without Condensation	
Vibration		4.9M/S ²		19.6M/S ²	XYZ Direction	
Shock		29.4M/S ²	490M/S ²		XYZ Direction	

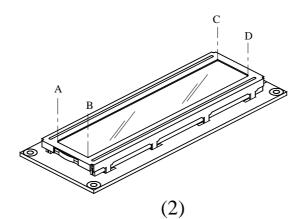
Note(1) Ta = $0^{\circ}C$: 50Hr Max.

Note(2) Ta $\leq 40^{\circ}$ C : 90% RH Max.

Ta $\geq 40^{\circ}$ C : Absolute humidity must be lower than the humidity of 90% RH at 40°C.



4.3 Electronic Static Discharge maximum rating


ESD test method : IEC1000-4-2

Item	Description					
Testing environment	Ambient tempe	Ambient temperature :15°C to 35 °C				
	Humidity: 30%	5 to 60 %				
	LCM (E.U.T)	: Power up				
Testing equipment	Manufacture: N	Noise Ken, Model No. ESD-100L				
Testing condition	See drawing 1					
Direct discharge	0 to ± 6 KV	Discharge point, see drawing 2				
Indirect discharge	0 to ± 12 KV	Discharge point, see drawing 1				
Pass condition	No malfunction	n of unit. Temporary malfunction of unit which				
	can be recovered by system reset					
Fail condition	Non. Recovera	ble malfunction of LCM or system				

FIG 1 ESD TESTING EQUIPMENT

DIRECT CONTACT DISCHARGE CONTACT POINT : A.B.C.D

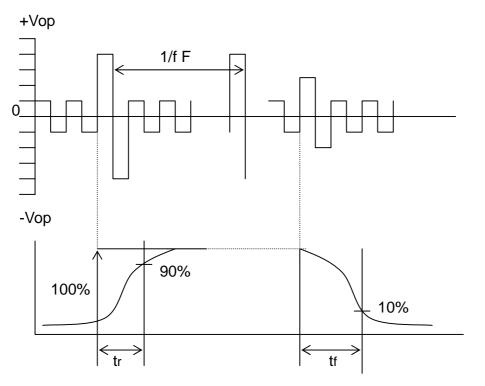
5. ELECTRI CAL CHARACTERI STI CS

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (Logic)	VDD-VSS		4.5	5.0	5.5	V
		-20°C	21.0	21.6	22.2	
		-10	20.8	21.5	22.1	
Supply Voltage	Vdd-Vo	0	20.7	21.4	22.0	V
(LCD)		25°C	20.7	21.4	22.0	v
		50	19.9	20.6	21.2	
			70°C	18.6	19.3	19.9
Input Voltage	Vih		0.8*Vdd		Vdd	V
input voltage	VIL		Vss		0.2*Vdd	v
Logic Supply	IDD	Vdd=5V		49	60	
Current	I _{VO}	VOP=21.4V VR=10K		0.56		mA

6. ELECTRO-OPTI CAL CHARACTERI STI CS

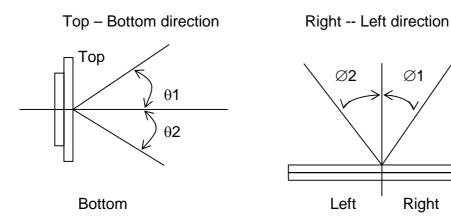
ITEM	Symbol	Condition	Min.	Тур.	Max.	Unit	Ref.	
Dias Time	т.	-20°C			15000			
Rise Time	Tr	25°C			350	ms	Note (1)	
Fall Time	Tf	-20°C			15000	ms		
	11	25°C			350	1115		
Contrast	CR	25°C	3				Note (3)	
View Angle	θ1~θ2	25°C &		-20~30		dog	Note (2)	
view Angle	Ø1, Ø2	CR≥2	-30~30			deg	Note (2)	
Frame Frequency	Ff	25°C	32	64	200	Hz		

Note (1) & (2) : See next page


Note (3) : Contrast ration is defined under the following condition:

CR= Brightness of non-selected condition Brightness of selected condition

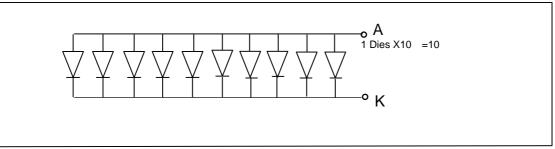
- (a). Temperature ----- 25°C
- (b). Frame frequency ---- 64Hz
- (c). Viewing angle ----- $\theta = 0^{\circ}$, $\emptyset = 0^{\circ}$
- (d). Operating voltage --- 21.4V


Note (1) Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below:

Condition:

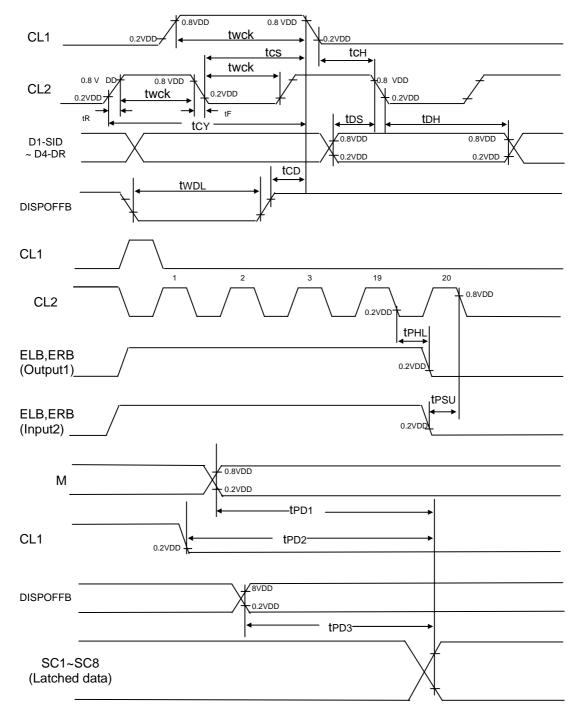
- (a). Temperature -----25°C
- (b). Frame frequency ----- 64Hz
- (c) . View Angle ------ $\theta = 0^{\circ}, \varnothing = 0^{\circ}$
- (d). Operating voltage ----- 21.4V

Note (2) Definition of View Angle

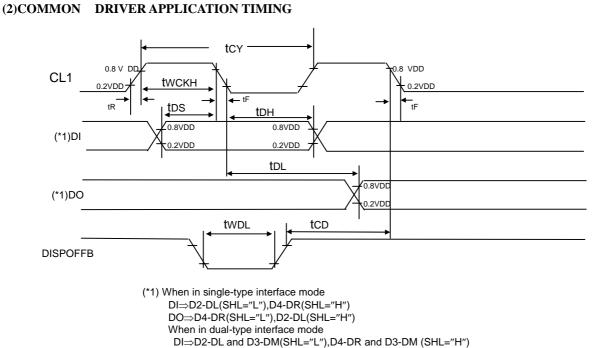

					Г	$Ta = 25^{\circ}C$
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	IF = 200mA White	3.0	3.4	3.8	V
Luminous Intensity	Iv	IF = 200mA White	400			cd/m ²
Uniformity	formity IF = 200mA White		80			%
Chromaticity	Х	IF = 200mA	0.26	0.30	0.33	nm
Chilomaticity	Y	White	0.26	0.30	0.33	11111

Note : Measured at the bared LED backlight unit.

6.2 LED MAXIMUM OPERATING RANGE

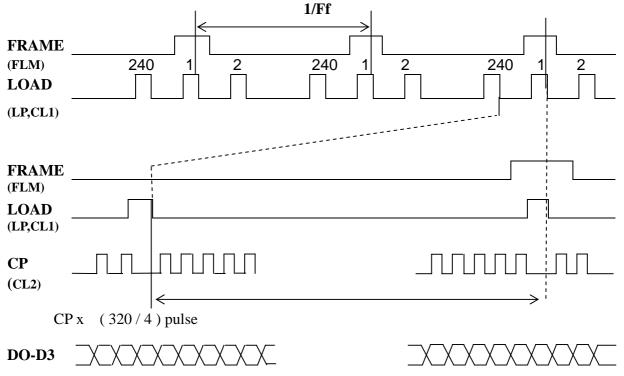

Item	Symbol	White	Unit
Power Dissipation	Pad	680	mW
Forward Current	laf	200	mA
Reverse Voltage	VR	5	V

6.2.1 LED ARRAY BLOCK DIAGRAM



7. TIMING CHARACTERISTIC (1) SEGMENT DRIVER APPLICATION TIMING

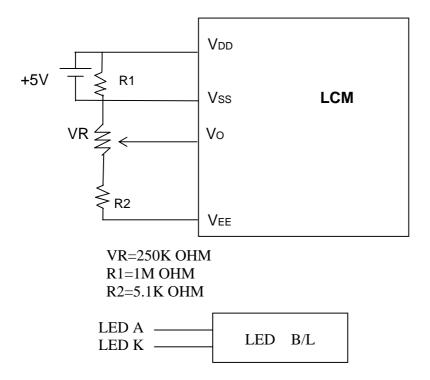
DO⇒D4-DR (SHL="L"),D2-DL (SHL="H")


AC Characteristics TOUTION

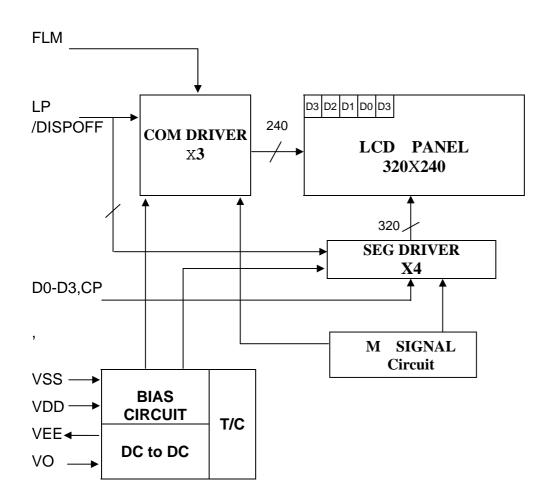
(1)SEGMENTDRIVERAPPLIC	ATION				(VSS=0	V, Ta=-	30~ +85)
Characteristics	Symbol	Test	(1)VDD=5V±10%			(2)VDD=3V±10%			Unit
Characteristics	Symbol	Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Umt
Clock cycle time	t _{CY}	Duty=50%	125	-	-	250	-	-	
Clock pulse width	t _{WCK}		45	-	-	95	-	-	
Clock rise/fall time	t _{R/} t _F		-	-	-	-	-	30	
Data set-up time	t _{DS}		30	-	-	65	-	-	
Data hold time	t _{DH}		30	-	-	65	-	-	
Clock Set-up time	t _{cs}		80	-	-	120	-	-	ns
Clock hold time	t _{CH}		80	-	-	120	-	-	
Propagation delay time	t _{PHL}	ELB Output ERB Output		-	60 60	-	-	125 125	
ELB,ERB Set-up time	t _{PSU}	ELB Input ERB Input	30 30	-	-	65 65	-	-	
DISPOFFB low pulse width	t _{WDL}		1.2	-	-	1.2	-	-	μs
DISPOFFB clear time	t _{CD}		100	-	-	100	-	-	ns
M-OUT propagation delay time	t _{PD1}		-	-	1.0	-	-	1.2	
Cl1-OUT propagation delay time	t _{PD2}	CL=15 pF	-	-	1.0	-	-	1.2	μs
DISPOFFB-OUT propagation delay time	t _{PD3}		-	-	1.0	-	-	-	

(2) COMMON DRIVER APPLICATION (VSS = 0 V, Ta = -30 - +85)Test (1)VDD=5V±10% (2)VDD=3V±10% Unit **Characteristics** Symbol Condition Min. Typ. Max. Min. Тур. Max. Clock cycle time Duty=50% 250 500 t_{CY} ----Clock pulse width 45 95 _ twck --_ Clock rise/fall time 50 50 _ $t_{R/}t_{F}$ -_ ns Data set-up time 30 -65 - t_{DS} -Data hold time 30 65 t_{DH} _ -_ _ DISPOFFB low pulse width 1.2 1.2 μs \mathbf{t}_{WDL} ----DISPOFFB clear time 100 --100 -- t_{CD} ns Output delay time 200 250 t_{DL} ----M-OUT 1.0 1.2 _ _ _ _ t_{PD1} propagation delay time Cl1-OUT CL=15 pF 1.0 -_ _ 1.2 μs _ t_{PD2} propagation delay time DISPOFFB-OUT 1.0 _ _ 1.2 _ _ t_{PD3} propagation delay time

7.1 TIMING CHART



8. 1


No.	Symbol	Function
1	D0	Data bus line 0
2	D1	Data bus line 1
3	D2	Data bus line 2
4	D3	Data bus line 3
5	/DISPOFF	Display on/off control, High= ON Low= OFF
6	FLM	First Line Mark
7	N.C	NO Connection
8	CL1	Data Latch Pulse
9	CL2	Data Shift Pulse
10	VDD	Power Supply For Logic
11	VSS	GND
12	VEE	Negative voltage output
13	VO	Input voltage for LCD contrast adjustment
14	FGND	Frame Ground

9. POWER SUPPLY

10. BLOCK DI AGRAM

11.1 Test Condition

- 11.1.1 Temperature and Humidity(Ambient Temperature)
- 11.1.2 Temperature : $20 \pm 5^{\circ}C$
 - Humidity $65 \pm 5\%$

11.1.3 Operation

Unless specified otherwise, test will be conducted under function state.

11.1.4 Container

Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

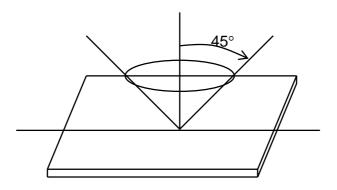
11.1.5 Test Frequency

In case of related to deterioration such as shock test. It will be conducted only once.

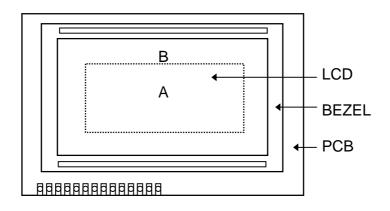
11.1.6 Test Method

No.	Parameter	Conditions	Regulations
1	High Temperature Operating	70 ± 2 °C	Note 3
2	Low Temperature Operating	-20 ± 2 °C	Note 3
3	High Temperature Storage	80 ± 2 °C	Note 3
4	Low Temperature Storage	-30 ± 2 °C	Note 3
5	Vibration Test (Non-operation state)	Total fixed amplitude : 1.5mm Vibration Frequency : 10 ~ 55Hz One cycle 60 seconds to 3 directions of X.Y.Z. for each 15 minutes	Note 3
6	Damp Proof Test (Non-operation state)	40°C ± 2°C, 90~95%RH, 96h	Note 1,2
7	Shock Test (Non-operation state)	To be measured after dropping from 60cm high once concrete surface in packing state	Note 3

Note 1: Returned under normal temperature and humidity for 4 hrs.


Note 2: No dew condensation to be observed.

Note 3: No change on display and in operation under the test condition



11.2 .1 Inspection conditions

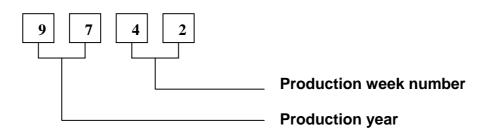
The LCD shall be inspected under 40W white fluorescent light.

11.2.2 Definition of applicable Zones

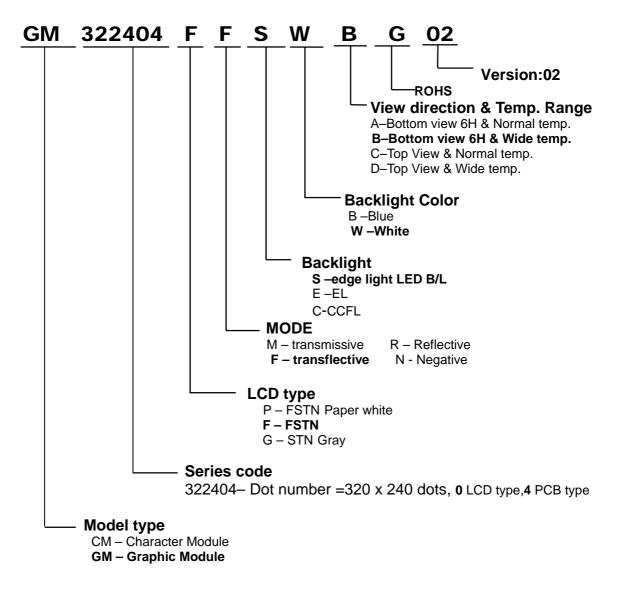
A : Display Area

B : Non-Display Area

No	. Parameter	Criteria
1	Black or White spots	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
2	Scratch, Substances	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
3	Air Bubbles (between glass & polarizer)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
4	Uniformity of Pixel	 * : Disregard Total defects shall not excess 3/module. (1) Pixel shape (with Dent) 0.152



11.3 Sampling Condition


Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer. Lot size: Quantity of shipment lot per model. Sampling type: normal inspection, single sampling Sampling table: MIL-STD-105E Inspection level: Level II

12. LOT NUMBERING SYSTEM

13. LCM NUMBERING SYSTEM

14. PRECAUTIONS IN USE LCM

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,

(1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause

polarization degredation, polarizer peel off or bubble.

(2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.

(3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.

(4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.

(5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.

(1). Do not tamper in any way with the tabs on the metal frame.

(2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.

(3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).

(4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting . Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.

(5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

(1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.

(2). The modules should be kept in antistatic bags or other containers resistant to static for storage.

(3). Only properly grounded soldering irons should be used.

(4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

GM322404FFSWBG02 REV:C

(5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.(6). Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

2.3 Soldering

(1). Solder only to the I/O terminals.

(2). Use only soldering irons with proper grounding and no leakage.

(3). Soldering temperature : $280^{\circ}C \pm 10^{\circ}C$

(4). Soldering time: 3 to 4 sec.

(5). Use eutectic solder with resin flux fill.

(6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

2.4 Operation

(1). The viewing angle can be adjusted by varying the LCD driving voltage V0.

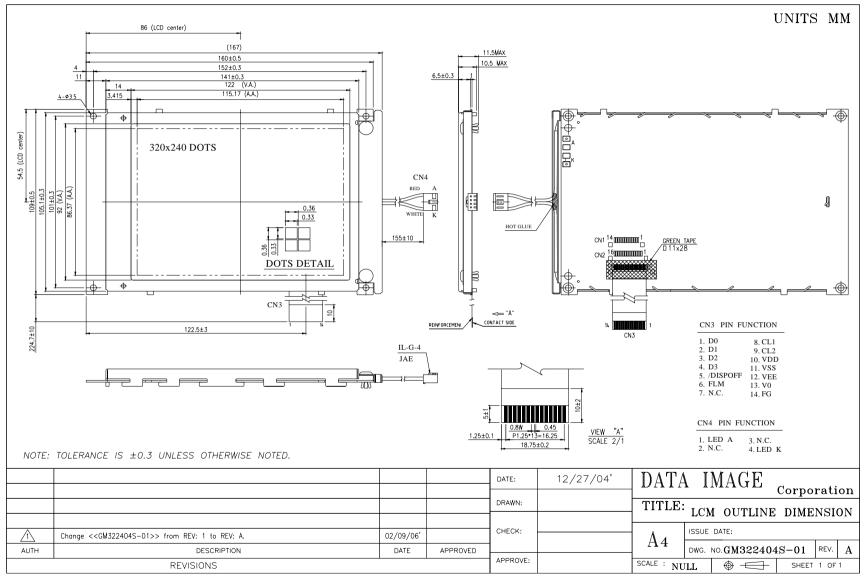
(2). Driving voltage should be kept within specified range; excess voltage shortens display life.

(3). Response time increases with decrease in temperature.

(4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".

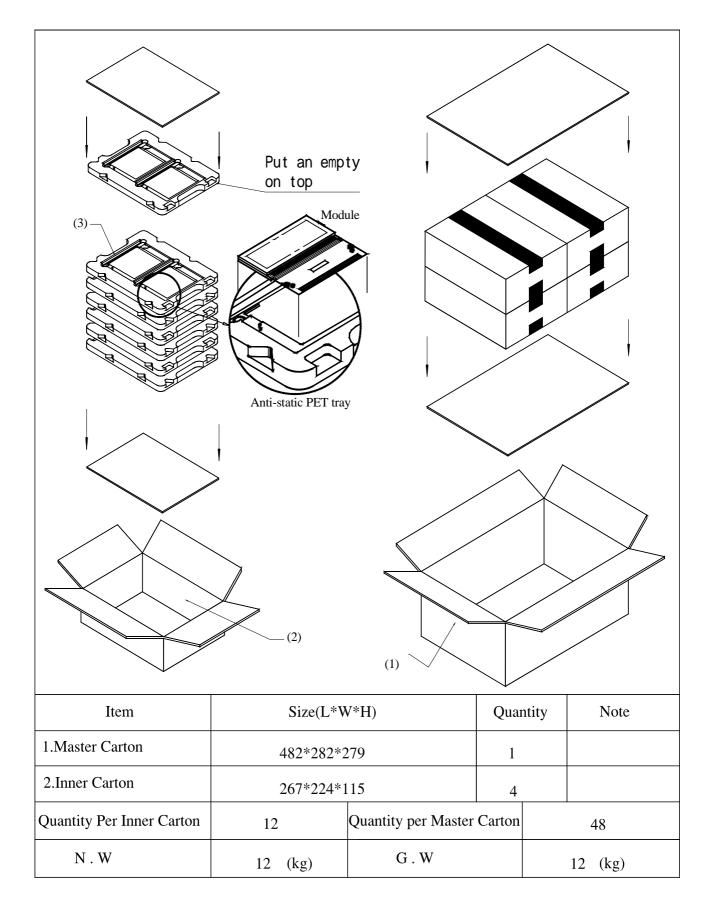
(5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage


If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Limited Warranty

Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.



15. OUTLINE DRAWING

16. PACKAGE INFORMATION

