

PRODUCT SPECIFICATION

16X2 CHARACTERS LCD MODULE MODEL:C1602A4TVW6B-R0 Ver:1.1

< <>> Preliminary Specification

< <> Finally Specification

CUSTOMER'S APPROVAL						
CUSTOMER :						
SIGNATURE:	DATE:					

APPROVED	РМ	PD	PREPARED
BY	REVIEWED	REVIEWED	BY
ZAMIVIL DOMINIS	JP Zump	西落	刘春辉

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver 1.0	2018-09-05	-	First issued	
Ver 1.1	2018-10-17	4,5	Add sample NO. and backlight parameters;Modify V _{OP} and I _{DD} and block diagram	

Issued Date:2018-10 Doc. No.:QP-001-02	
Table of Contents	
No. Contents Pa	ge
1. FEATURES	4
2. MECHANICAL SPECIFICATIONS	1
2. MIECHANICAL SI ECIFICATIONS	4
3. ELECTRICAL SPECIFICATIONS	4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM	5
5. TIMING CHARACTERISTICS	6
6. COMMAND LIST	9
	,
7. CHARACTER GENERATOR ROM1	2
8. QUALITY SPECIFICATIONS1	3
	•
9. RELIABILITY 1	8
10. HANDLING PRECAUTION1	9
11. OUTLINE DIMENSION2	0

1. FEATURES

The features of LCD are showed as follows

- * Display mode : VA/Transmissive/Negative
- * Controller IC : ST7066U-5H-V1
- * Display format : 16X2 Characters
- * Interface Input Data : 4bit or 8 bit MPU
- * Driving Method : 1/16 Duty, 1/4 Bias* Viewing Direction : 6 O'clock
- - : 2*2=4 LED/Side white

* Backlight

- * Sample NO. : C1602A4TVW6B-R0_01/20181016

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	Module Size 122(W) x 44(H) x 13.3MAX(D)	
Viewing Area	99(W) x 25(H)	mm
Activity Display Area	94.84(W) x 20.0(H)	mm
Character Font	5 x 8 Dots	-
Character Size	4.84(W) x 9.66(H)	mm
Character Pitch	6.0(W) x 10.34(H)	mm
Dot Size	0.92(W) x 1.10(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Item	Symbol	Min	Max	Unit
Supply Voltage For Logic	V _{DD}	-0.3	+7	V
Supply Voltage For LCD Drive	V _{LCD}	V _{DD} -10.0	V _{DD} +0.3	V
Input Voltage	Vin	-0.3	V _{DD} +0.3	V
Operating Temp.	Тор	-20	+70	°C
Storage Temp.	Tst	-30	+80	°C

*NOTE: The response time will be extremely slow when the operating temperature is around -10°C, and the back ground will become darker at high temperature operating.

3-2 ELECTRICAL CHARACTERISTICS

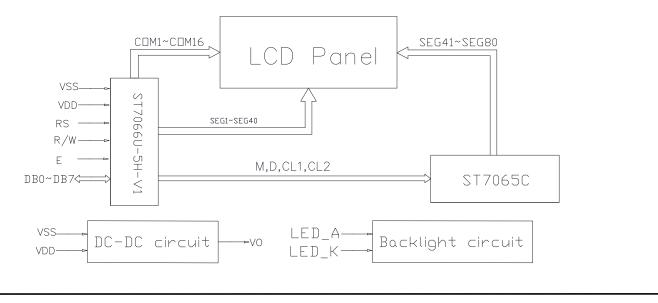
ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic sup	ply Voltage	V _{DD} – Vss		-	5.0	-	V
LCD Drive(with DC-DC circuit)		V _{OP} = V _{DD} -V5		-	8.0	-	V
	"H" Level (Except OSC1)	V _{IH1}		0.7V _{DD}	-	V _{DD}	V
Input Voltage	"L" Level (Except OSC1)	V _{IL1}	Ta = 25 °C V _{DD} = 5.0V	-0.3	-	0.6	V
input voitage	"H" Level (OSC1)	V _{IH2}		$0.7V_{\text{DD}}$	-	V_{DD}	V
	"L" Level (OSC1)	V _{IL2}		-	-	$0.2V_{\text{DD}}$	V
Frame F	Frame Frequency			-	75	-	Hz
Current C	onsumption	I _{DD}		-	3.2	-	mA

3-3 BACKLIGHT

3-3-1. Absolute Maximum Ratings

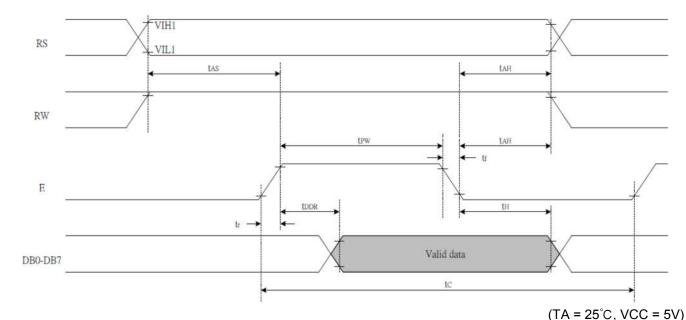
ltem	Symbol	Condition	min	Тур	Мах	Unit
Forward Current	lfm	Ta = 25℃	-	I	25*2+25*2	mA
Power Dissipation	Pd	Ta – 25 C	-	-	75*2+75*2	mW
Reverse Current	lr	Vr=5V	-	-	10*2	mA

3-3-2. Electrical-optical Characteristics

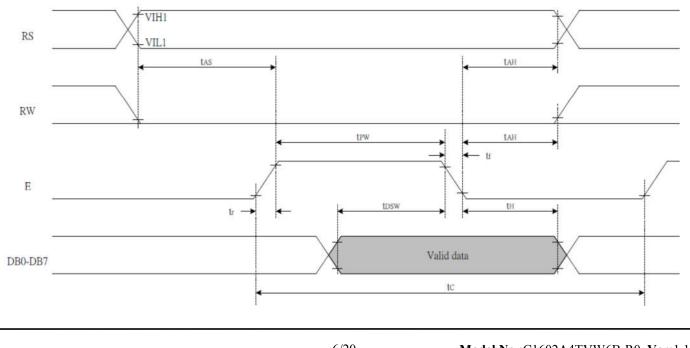

ltem	Symbol	Condition	Min.		ту	/p.	Ma	ax.	Unit		
Forward Current	lf		-		30)*2	45	5*2	mA		
Luminance	Lv	Ta = 25℃	1000		1000			-		-	cd/m ²
Colour coordinate	-	Vf = 5.0V	X Y 0.25 0.2		X 0.28	Y 0.28	X 0.32	Y 0.32			

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

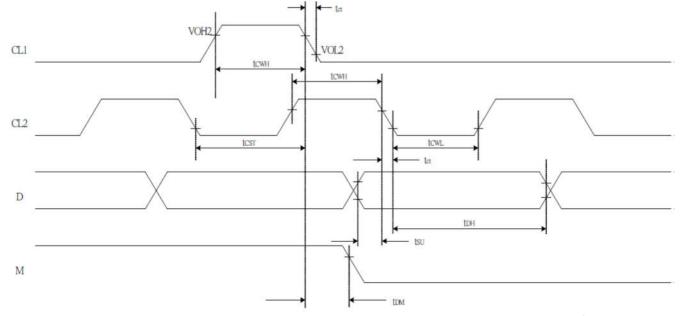
4-1 INTERFACE PIN FUNCTION DESCRIPTION


PIN NO.	Symbol	Functions
1	LED_A	Backlight+
2	LED_K	Backlight-
3	VSS	Ground
4	VDD	Supply voltage for logical circuit
5	V0	Supply voltage for LCD driving
6	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
7	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
8	E	A enable signal for reading or writing data.
9~16	DB0~DB7	8 Bit Data Bus

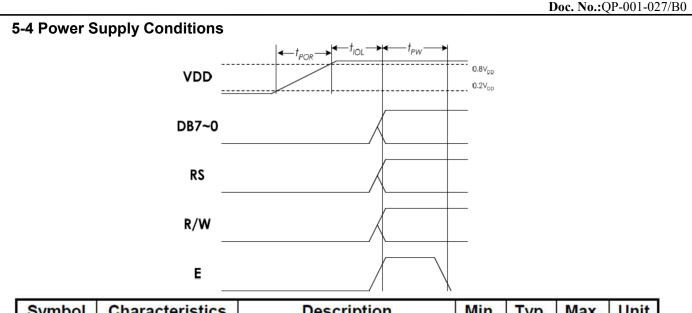
4-2 BLOCK DIAGRAM


5. TIMING CHARACTERISTICS

5-1 Reading data from ST7066U to MPU


					(171 20	0 , 100 01
Tc	Enable Cycle Time	Pin E	1200	1	-1	ns
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T _R ,T _F	Enable Rise/Fall Time	Pin E	i.	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0		-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	3 —	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	2-	-	100	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10		-	ns

5-2 Writing data from MPU to ST7066U


					$(TA = 25^{\circ})$	C, VCC = 5V)
T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T _{PW}	Enable Pulse Width	Pin E	140		-	ns
T _R ,T _F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-		ns
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40		-	ns
Т _н	Data Hold Time	Pins: DB0 - DB7	10	-	E	ns

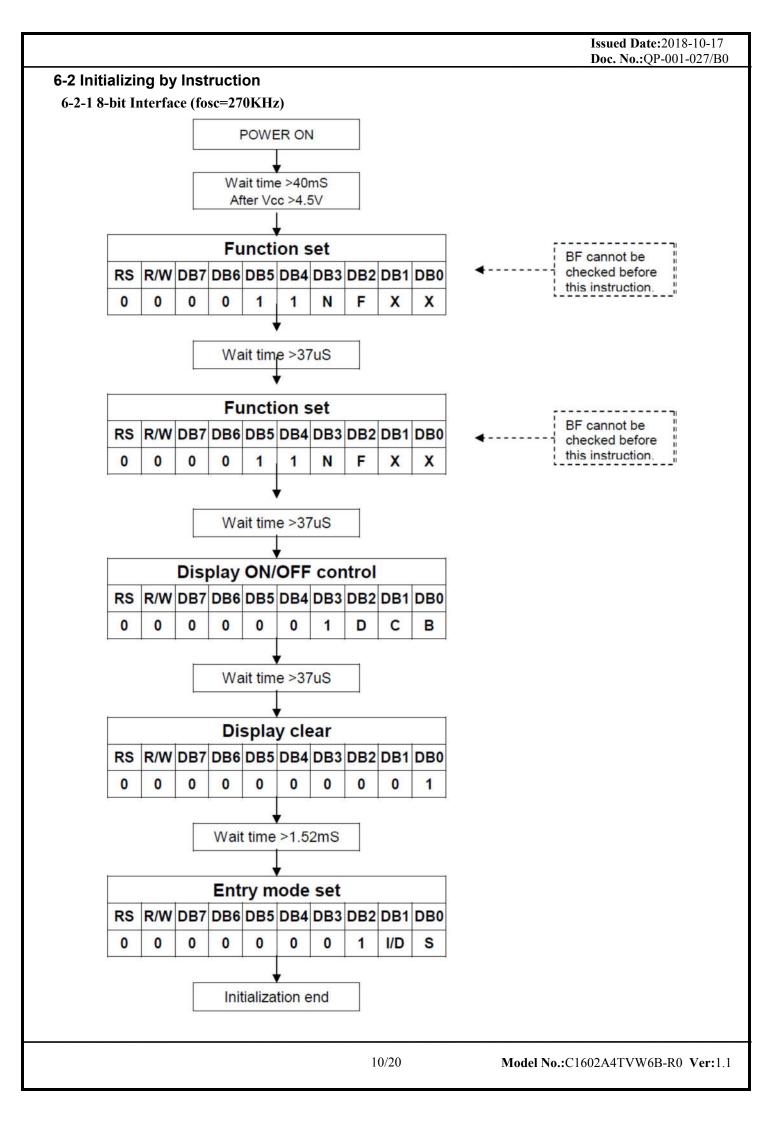
5-3 Interface Timing with External Driver

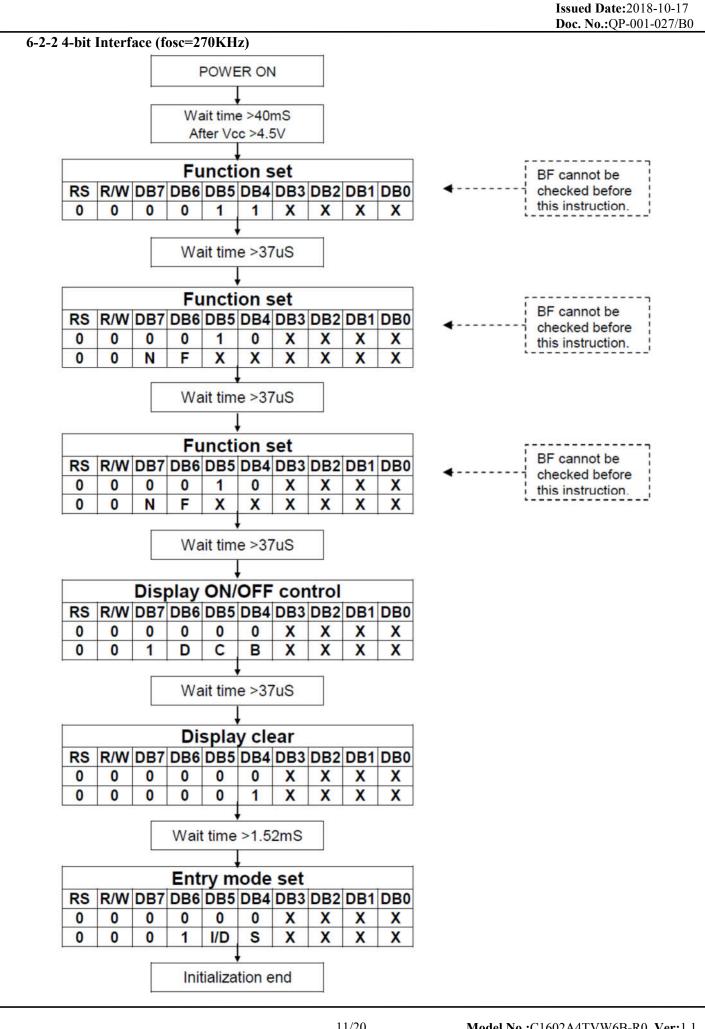
(TA = 2)	5°C, V	/CC =:	5V)

	_		_	(1	11 250	$, \mathbf{v} \mathbf{c} \mathbf{c} - \mathbf{J} \mathbf{v} \mathbf{j}$
T _{CWH}	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns
T _{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	-	-	ns
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns
T _{DH}	Data Hold Time	Pin: D	300		-	ns
T _{DM}	M Delay Time	Pin: M	0	-	2000	ns

Symbol	Characteristics	Description	Min.	Тур.	Max.	Unit
tPOR	Power rise time	Power rise time that will trigger internal power on reset circuit	0.1		100	ms
tIOL	I/O Low time	The period that I/O is kept low.	40			ms
tPW	Enable pulse width	Please refer to the following tables.				

- During tPOR, VDD noise should be reduced (especially close to 2.0V). Otherwise the Power-ON-Reset function might be triggered several times and maybe cause unexpected result.
- 2. During tIOL, the I/O ports of the interface (control and data signals) should be kept at "Low".

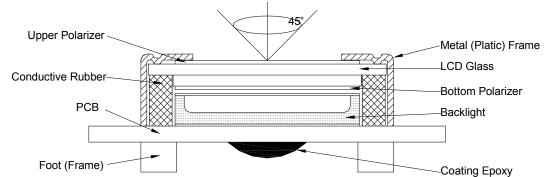

6. COMMAND LIST


6-1 Instruction Table

				Inst	ructi	on C	Code	•				Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	с	в	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	x	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

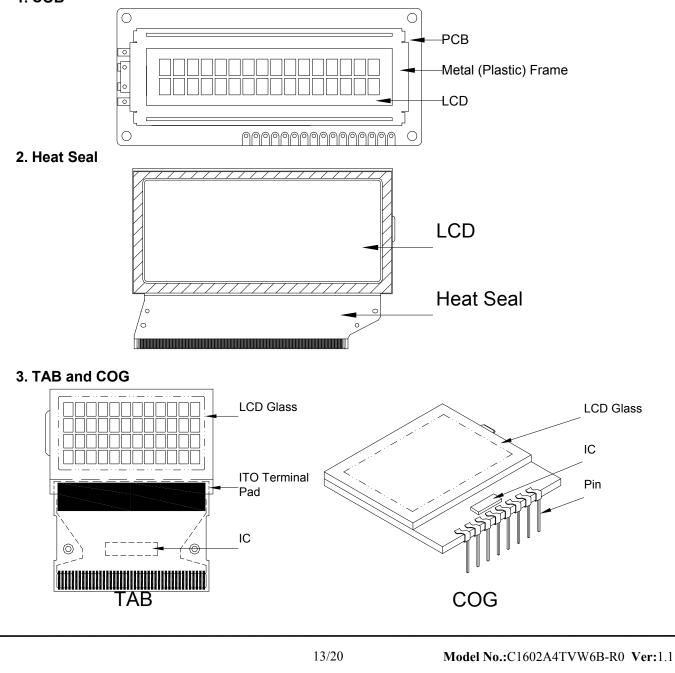
Note:

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.



7. CHARACTER GENERATOR ROM 1100 1101 11110 11111 63-60 CG **₽**₽₽ 0000|RAM (1)(2)0001 (3)μÐ 0010 0011 (4)Ø (5)0100 ø ∰ (8)0101 (7)0110 (8)0.111(1)1000 B 1001 (2)鹶 ▦ (3)1010 ⋬ (4)1011 ij 韠 (5)1100 ji ji ji (6)1101 (7)1110 ininini i (8)1111

8. QUALITY SPECIFICATIONS


8-1. LCM Appearance and Electric inspection Condition

1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.

- 2. View Angle: with in 45° around perpendicular line.
- 8-2. Definition

8-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance

Major defect:AQL = 0.65%Minor defect:AQL = 1.5%

8-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standards		
Minor	Component marking not readable		Reject	
Minor	Component height	Exceed the dimension Of drawing	Reject	
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject	
Minor	Component position shift x component soldering pad x \rightarrow x	X < 3/4Z Y > 1/3D	Reject Reject	
Minor	Component tilt component D soldering pad	Y > 1/3D	Reject	
Minor	Insufficient solder component θ PAD PCB	<i>θ</i> <u>≤</u> 20°	Reject	

Defect	Inspection Item	Ir	spection Standa	rds
Major	Crack / breakage	Any	where	Reject
		W	L	Acceptable of Scratch
		w<0.1mm	Any	Ignore
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1
		w <u>></u> 0.3mm	Any	0
			eater than 5mm. on the back sid gnored .	· .
				Acceptable of Dents / Pricks
	Frame Dent , Prick $\Phi = \frac{L + W}{2}$			2
Minor		1.0<⊕ <u><</u> 1.5mm		1
		1.5mm<Φ		
Minor	$\Phi = \frac{L + W}{2}$	1.5r	nm< Φ	0
Minor	$\Phi = \frac{L + W}{2}$	Note : 1. Above / pricks with dist	criteria applicable tance greater than rick on the back s	to any two den 5mm
Minor Minor	$\Phi = \frac{L + W}{2}$ Frame Deformation	Note : 1. Above / pricks with dist 2. Dent / pr visible) can be i	criteria applicable tance greater than rick on the back s	to any two den 5mm ide of frame (n

4. Flexible Film Connector (FFC)

Defect	Inspection Item		Inspection Standa	rds
Minor	Tilted soldering		Within the angle +5°	Acceptable
Minor	Uneven solder joint /bump			Reject
			Expose the conductive line	Reject
Minor	r Hole $\Phi = -$	$\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject
Minor	Minor Position shift		Y > 1/3D	Reject
Minor '		X > 1/2Z	Reject	

5. Screw

Defect	Inspection Item Inspection Standards		
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal TCP FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift $Y \xrightarrow{- \frac{1}{2}} \xrightarrow{- \frac{1}{2}$	Y > 1/3D	Reject
Minor		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards		
		Acceptable number of units		
		⊕ <u><</u> 0.10mm	Ignore	
	Minor LED dirty, prick	0.10<⊕ <u><</u> 0.15mm	2	
Minor		0.15<⊕ <u><</u> 0.2mm	1	
		⊕>0.2mm	0	
		The distance between any two spots should be <u>></u> 5mm Any spot/dot/void outside of viewing area is acceptable		
Minor	Protective film tilt	Not fully cover LCD	Reject	
Major	COG coating	Not fully cover ITO circuit	Reject	

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

Defect	Insp	ect Item			Ins	spectio	n Si	tandards	5	
		* Glass Scratch	W	-			0.			V>0.05
Minor	Linear Defect	* Polarizer Scratch	L	L		<5		L<3		Any
		* Fiber and Linear	ACC. NO.	1			1		Reject	
		material	Note	L is the length and W is the width of the defec						fect
Minor	Black Spot and Polarizer Pricked	* Foreign material				0.15 0.15<⊕ <u><</u> 0.2		⊕>0.2		
		between glass and polarizer or glass		3EA / 2 100mm ²		1		0		
		and glass * Polarizer hole or protuberance by external force	INOte	Φ is the average diameter of the defect. Distance between two defects > 10mm.						
Minor	White Spot and Bubble in polarizer	* Unobvious	Ŧ	⊕ <u><</u> 0.3		0.3<⊕ <u><</u> 0.5 0		0.	5 <⊕	
		transparant foreign material between	NO.	3EA / 100mm ²			1		0	
		glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note	Φ is the average diameter of the defect. Distance between two defects > 10mm.						
Minor	Segment Defect		Φ	⊕ <u><</u> 0	.10	0.10<⊕ <u><</u> 0		20 0.20<⊕ <u><</u> 0.25		Ф >0 .2
			ACC. NO.	3EA 100n		2		1		0
				W is more than 1/2 segment width R				Reje		
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
Minor	Protuberant Segment		Φ	Ф <u><</u> 0.10		0.10<⊕ <u><</u> 0.20				Ф >0.2
		w w	W	Glu	ie	W <u><</u> 1/2 Se W <u><</u> 0.2		W <u><</u> 1/2 Seg W <u><</u> 0.2		Ignor
		Φ = (L + W) / 2	ACC. NO.	3EA 100n		2		1		0
Minor	Assembly Mis-alignment		1. Segment							
			E							1.0mm
			B- Juc							<0.25 eptable
			2. Dot Matrix							
									Rejeo	
Minor	Stain on LCD Panel Surface		Accept when stains can be wiped lightly with a soft cloth or a similar one. Otherwise, judged according to the above items: "Black spot" and "White Spot"							

9. RELIABILITY

No	Item	Condition	Quantity	Criteria	
1	High Temperature Operating	70℃, 96Hrs	2	GB/T2423.2 -2008	
2	Low Temperature Operating	-20°C, 96Hrs	2	GB/T2423.1 -2008	
3	High Humidity	60℃, 90%RH, 96Hrs	2	GB/T2423.3 -2006	
4	High Temperature Storage	80℃, 96Hrs	2	GB/T2423.2 -2008	
5	Low Temperature Storage	-30°C, 96Hrs	2	GB/T2423.1 -2008	
6	Thermal Cycling Test	-20℃, 60min~70℃, 60min, 20 cycles.	2	GB/T2423.22 -2012	
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.	2	GB/T5170.14 -2009	
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626.2 -2006	
	Electrical Static Discharge	Contact: ± 4 KV 150pF/330 Ω 5 times			
9	Drop Test(Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995	

*NOTE:1) Above conditions are suitable for our company standard products. 2) For restrict products, the test conditions listed as above must be revised.

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol

- Ethyl alcohol

- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water

- Ketone

- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

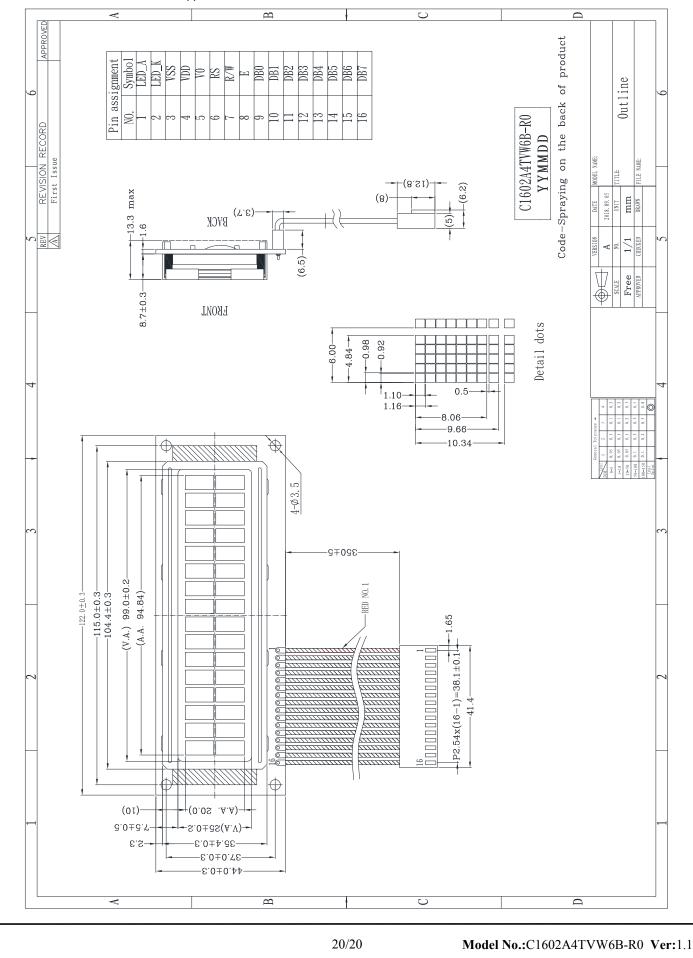
(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety


- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.
- When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

(8) Other

- After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

11. OUTLINE DIMENSION

*NOTE: The dimension with"()" is reference.

