

PRODUCT SPECIFICATION

MONOLCD MODULE MODEL:C1602A1TVW9B-P0 Ver:1.1

- <>> Preliminary Specification
- <->Finally Specification

CUSTOMER'S APPROVAL						
CUSTOMER:						
SIGNATURE:	DATE:					

APPROVED	PM	PD	PREPARED
BY	REVIEWED	REVIEWED	ВҮ
2018/10	7028.10.0	话语、	刘春辉

Revision Status

Ver 1.0 2018-09-05 - First issued Ver 1.1 2018-10-08	Version	Revise Date	Page	Content	Modified By
Ver 1.1 2018-10-08 4,5 Modify sample NO. and V _{OP} ; Add I _{DD}	Ver 1.0	2018-09-05	-		
	Ver 1.1	2018-10-08	4,5	Modify sample NO. and V _{OP} ; Add I _{DD}	

Table of Contents

No. Contents Pag	e
1. FEATURES4	
2. MECHANICAL SPECIFICATIONS4	
3. ELECTRICAL SPECIFICATIONS4	
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM6	
5. TIMING CHARACTERISTICS7	
6. COMMAND LIST9	,
7. CHARACTER GENERATOR ROM12	
8. QUALITY SPECIFICATIONS	
9. RELIABILITY18	
10. HANDLING PRECAUTION19	
11. OUTLINE DIMENSION20	1

Issued Date:2018-10-08 **Doc.No.:**QP-001-027/B0

1. FEATURES

The features of LCD are showed as follows

* Display mode : VA/Transmissive/ Negative

* Controller IC : ST7066U-OA or equivalent(English-Japanese)

* Display format : 16X2Characters * Interface Input Data : 4 bit or 8 bit MPU * Driving Method : 1/16Duty, 1/5Bias

* Viewing Direction : 12 O'clock

* Backlight : 2 LED/Side White

* Sample NO. : C1602A1TVW9B-P0_01/20180929

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	80.0(W) x 36.0(H) x 10.7MAX(D)	mm
Viewing Area	64.0(W) x 16.0(H)	mm
ActivityDisplay Area	56.21(W) x 11.5(H)	mm
Character Font	5 x 8 Dots	-
Character Size	2.96(W) x 5.56(H)	mm
Character Pitch	3.55(W) x 5.94(H)	mm
Dot Size	0.56(W) x 0.66(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Item	Symbol	Min	Max	Unit
Supply Voltage For Logic	Vdd	-0.3	+7	V
Supply Voltage For LCD Drive	V_{LCD}	VDD-10.0	VDD+0.3	٧
Input Voltage	Vin	-0.3	VDD+0.3	V
Operating Temp.	Тор	-20	+70	°C
Storage Temp.	Tst	-30	+80	°C

^{*}NOTE: The response time will be extremely slow when the operating temperature isaround -10°C, and the back ground will become darker at high temperature operating.

3-2 ELECTRICAL CHARACTERISTICS

Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic sur	oply Voltage	VDD – Vss		-	5	-	V
LCD Drive(wit	h DC-DC circuit)	V _{OP} =V _{DD} -V0		-	9.5	-	V
	"H" Level (Except OSC1)	V _{IH1}		0.7VDD	-	VDD	V
	"L" Level (Except OSC1)	V _{IL1}	Ta = 25 °C	-0.3	-	0.6	V
Input Voltage	"H" Level (OSC1)	V _{IH2}	V _{DD} = 5.0V	0.7VDD	-	VDD	V
	"L" Level (OSC1)	V _{IL2}		-	-	0.2VDD	V
Frame Frequency		f _{FLM}		-	75	-	Hz
Current C	onsumption	I _{DD}		-	2.5	_	mA

3-3BACKLIGHT

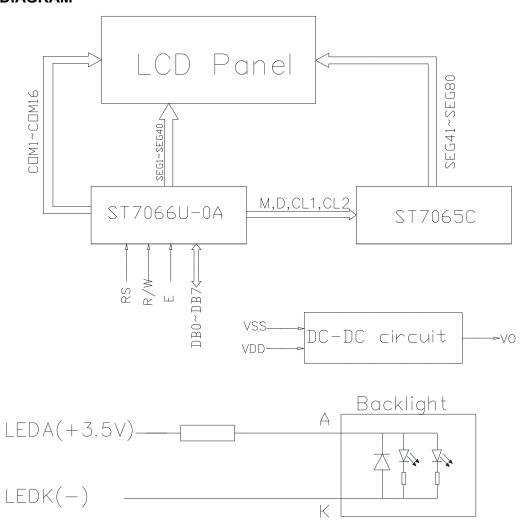
3-3-1. Absolute Maximum Ratings

Item	Symbol	Condition	min	Тур	Max	Unit
Forward Current	lfm	Ta = 25 °C	-	-	25*2	mA
Power Dissipation	Pd	1a - 25 C	-	-	75*2	mW
ReverseCurrent	lr	VR=5.0V	-	-	10*2	uA

3-3-2. Electrical-optical Characteristics

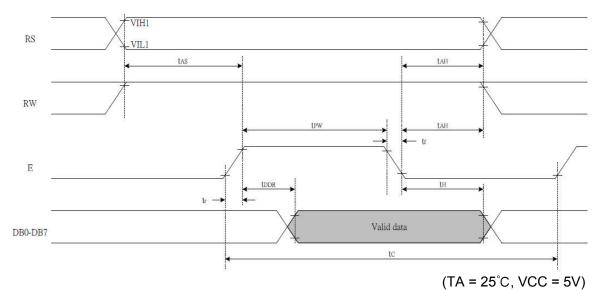
Item	Symbol	Condition	m	in	T	ур	М	ах	Unit
Forward Current	If			-	40		46		mA
Luminance	Lv	Vf = 3.5V Ta = 25 °C	10	00		-		-	cd/m ²
Calarinasandanata		. 4 20 0	Х	Υ	Х	Υ	Х	Υ	
Colour coordonate	_		0.25	0.25	0.28	0.28	0.32	0.32	-

*NOTE: The brightness is measured without LCD panel

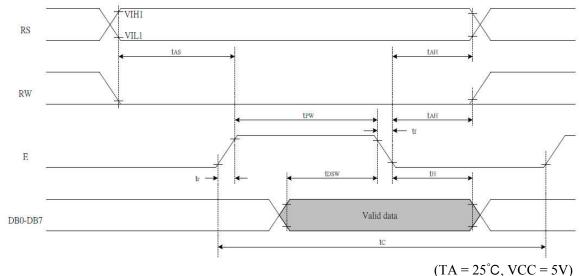

For operation above 25 °C,The lfm & Pd must be derated , the current derating is -0.36 mA/°C for DC drive and -0.86 mA/°C for Pulse drive ,the Power dissipation is -1.50 mW/°C. The product working current must not more than the 60% of the lfm or lfp according to the working temperature.

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

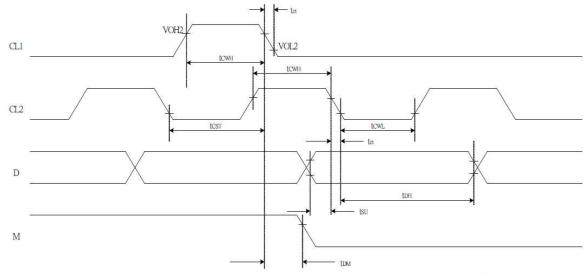
4-1INTERFACE PIN FUNCTION DESCRIPTION


PIN NO.	SYMBOL	FUNCTIONS
1	VSS	Ground
2	VDD	Supply voltage for logical circuit
3	V0	Supply voltage for LCD driving
4	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
5	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
6	E	Aenable signal for reading or writing data.
7-14	DB0~DB7	8 Bit Data Bus
15	LEDA	Backlight(+3.5V)
16	LEDK	Backlight(-)

4-2BLOCK DIAGRAM

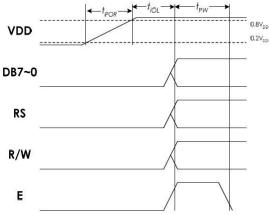

5. TIMING CHARACTERISTICS

5-1 Reading data from ST7066U to MPU


-				(IA	<u> </u>	, vcc –
T _C	Enable Cycle Time	Pin E	1200	13.50		ns
T_{PW}	Enable Pulse Width	Pin E	140	12	(20)	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	=		25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	8	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	100	=	100	ns
Тн	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns

5-2 Writing data from MPU to ST7066U

					(1A -	23 C, VC
T _C	Enable Cycle Time	Pin E	1200	110	-	ns
T_PW	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	=		25	ns
TAS	Address Setup Time	Pins: RS,RW,E	0	14	7 <u>44</u> 2)	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•	-	ns
T_{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	=	=	ns


5-3 Interface Timing with External Driver

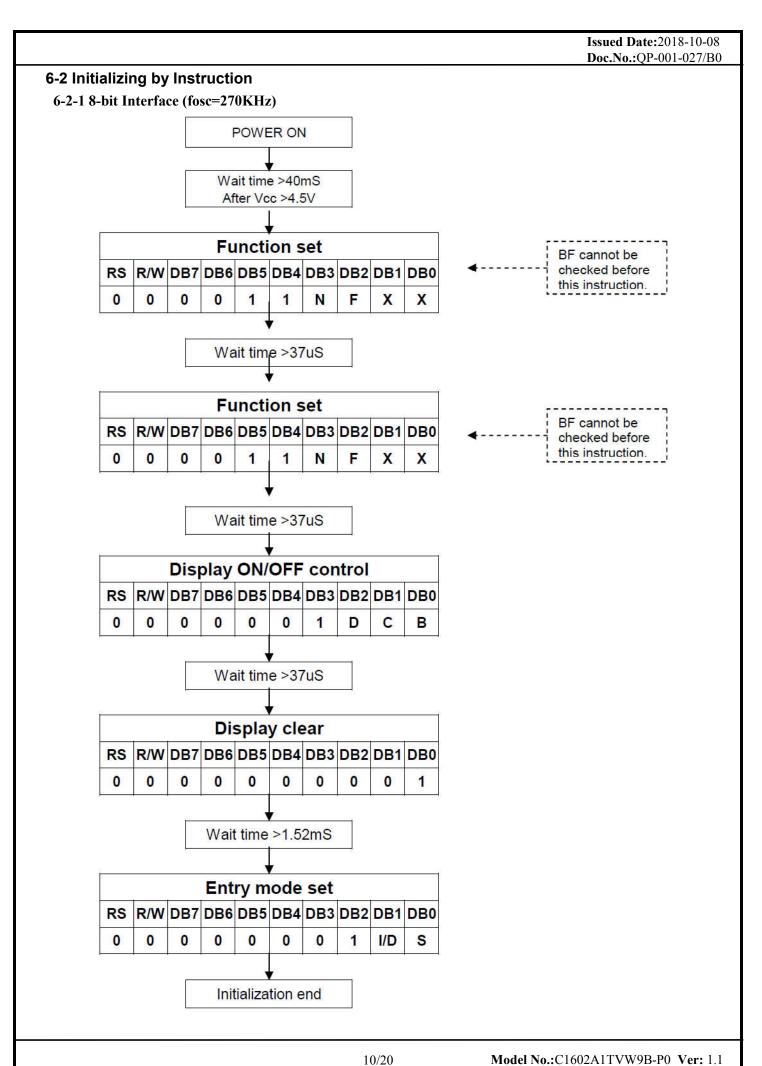
 $(TA = 25^{\circ}C, VCC = 5V)$

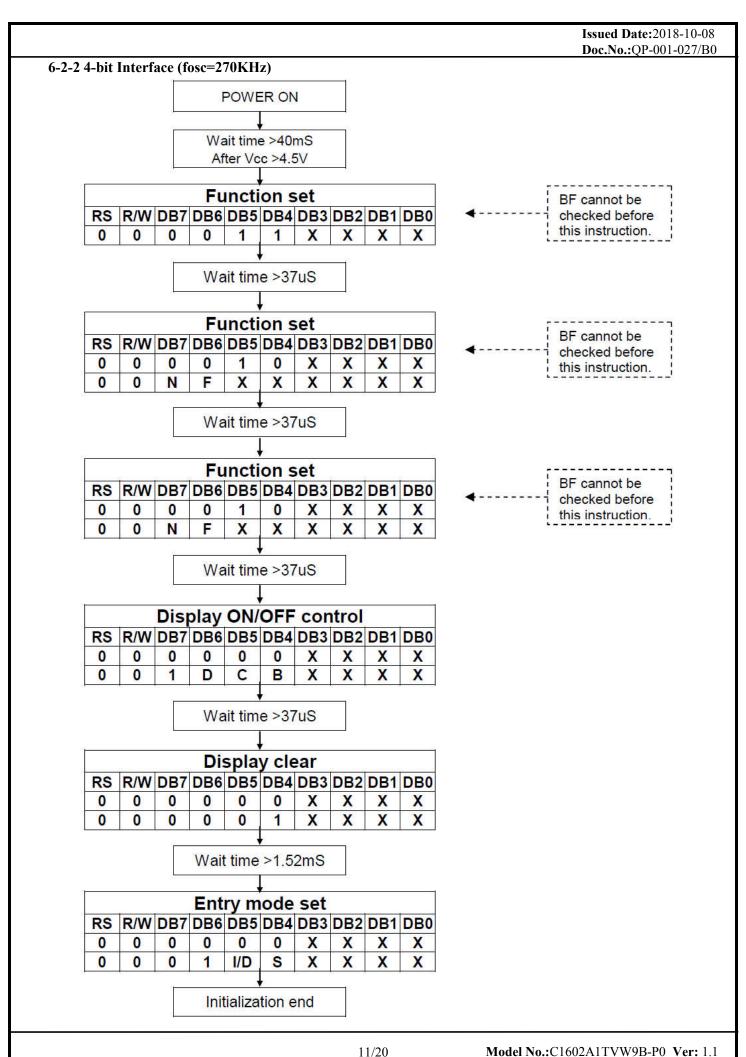
				(,	,
T_{CWH}	Clock Pulse with High	Pins: CL1, CL2	800	Ta	.T.	ns
T_{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	=	2 4 8	ns
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns
T_{SU}	Data Setup Time	Pin: D	300	=	12 0	ns
T _{DH}	Data Hold Time	Pin: D	300	-	-	ns
T_{DM}	M Delay Time	Pin: M	0	9	2000	ns

5-4 Power Supply Conditions

Symbol	Characteristics	Description	Min.	Тур.	Max.	Unit
tPOR	Power rise time	Power rise time that will trigger internal power on reset circuit	0.1		100	ms
tIOL	I/O Low time	The period that I/O is kept low.	40			ms
tPW	Enable pulse width	Please refer to the	followir	g tables	3.	

- During tPOR, VDD noise should be reduced (especially close to 2.0V). Otherwise the Power-ON-Reset function might be triggered several times and maybe cause unexpected result.
- 2. During tIOL, the I/O ports of the interface (control and data signals) should be kept at "Low".

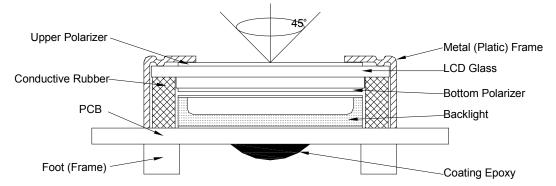

6. COMMAND LIST


6-1 Instruction Table

				Inst	ructi	on C	ode	•	3+1		08-08	Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	x	х	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Note:

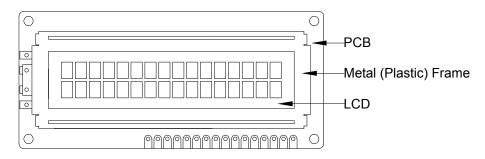
Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

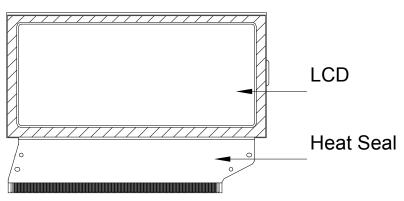


7. CHARACTER GENERATOR ROM

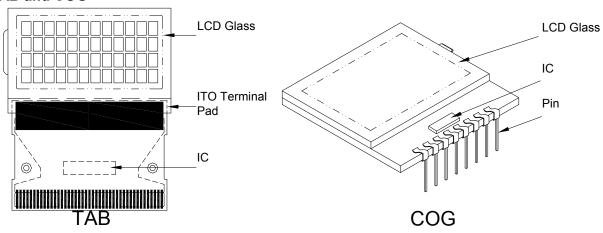
67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)													***		
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

8. QUALITY SPECIFICATIONS


- 8-1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.


2. View Angle: with in 45° around perpendicular line.

8-2. Definition


1. COB

2. Heat Seal

3. TAB and COG

Issued Date:2018-10-08 **Doc.No.:**QP-001-027/B0

8-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (||) ordinary single inspection is used.

2.Acceptance

Major defect: AQL = 0.65%Minor defect: AQL = 1.5%

8-4. Criteria

1.COB

000			
Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

.SMT			
Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing, extra, wrong component or wrong orientation		Reject
Minor	Component position shift component soldering pad	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component PAD	θ ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	li	nspection Standa	rds
Major	Crack / breakage	Any	where	Reject
		W	L	Acceptable of Scratch
		w<0.1mm	Any	Ignore
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1
		w <u>></u> 0.3mm	Any	0
		Note: 1. Above criteria applicable t with distance greater than 5mm. 2. Scratch on the back side visible) can be ignored.		
		,	•	Acceptable of Dents / Pricks
		Φ<	1.0mm	2
	Frame Dent , Prick	1.0<	> <u><</u> 1.5mm	1
Minor	$\Phi = \frac{L + W}{2}$	1.5	mm<Ф	0
	2	/ pricks with dis	e criteria applicable tance greater than rick on the back s ignored	5mm
Minor	Frame Deformation	Excee	d the dimension of	drawing
Minor	Metal Frame Oxidation		Any rust	

4. Flexible Film Connector (FFC)

4. Flexible F Defect		ection Item	Inspection Standa	rds
Minor	Tilte	d soldering	Within the angle +5°	Acceptable
Minor	Uneven s	older joint /bump		Reject
			Expose the conductive line	Reject
Minor	Hole	$\Phi = \frac{\Gamma + M}{2}$	Ф> 1.0mm	Reject
Minor	Y - W -	sition shift	Y > 1/3D	Reject
IVIII IOI	- 	- 	X > 1/2Z	Reject

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal \ TCP \ FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Ф> 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift	Y > 1/3D	Reject
IVIII IOI		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards			
		Acceptable number of units			
		⊕ <u><</u> 0.10mm	Ignore		
	Minor LED dirty, prick	0.10<⊕ <u><</u> 0.15mm	2		
Minor		0.15<⊕ <u><</u> 0.2mm	1		
		Ф>0.2mm	0		
		The distance between any two spots should be ≥ Any spot/dot/void outside of viewing area is acce			
Minor	Protective film tilt	Not fully cover LCD	Reject		
Major	COG coating	Not fully cover ITO circuit	Reject		

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD

Defect	Insp	ect Item		I	Ins	spection	St	andards	6	
	-	*Glass Scratch	W	W <u><</u> 0.03		0.0			V>0.05	
Minor	Linear Defect	*Polarizer Scratch	L	L<5			L<3		Any	
		* Fiber and Linear	ACC. NO.	1			1		Reject	
		material	Note	L is the	len	igth and W	is the	e width of	the de	efect
		* Foreign material	Φ	Φ <u><</u> 0.		0.1<⊕ <u><</u> 0.	15 ().15<⊕ <u><</u> 0	An Reject Point Point	⊕>0.2
Minor	Black Spot and Polarizer Pricked	between glass and polarizer or glass and glass * Polarizer hole or protuberance by external force	ACC. NO.		3EA / 100mm ² 2		1		0	
			Note	Φ is the average diameter of the defect. Distance between two defects >10mm.						
Minor	White Spot and Bubble in polarizer	* Unobvious	Φ	Ф <u><</u> 0.3			0.3<⊕ <u><</u> 0.5 0.		5<⊕	
		transparant foreign material between	ACC. NO.	3EA	EA / 100mm ²		1		0	
		glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note	Φ is the average diameter of the defect. Distance between two defects >10mm.						
	Segment Defect		Φ	Ф <u><</u> 0.1	0	0.10<⊕ <u><</u> 0	0.20	0.20<⊕ <u><</u> 0.25		Ф>0.25
Minor			ACC. NO.	3EA / 100mm		2		1		0
				W is more than 1/2 segment width Reject					Reject	
		W	Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
	Protuberant Segment	Φ = (L + W) / 2	Φ	Φ <u><</u> 0.1	0	0.10<⊕ <u><</u> 0	0.20	0.20<⊕ <u><</u> 0.25		Ф>0.25
Minor			W	Glue		W <u><</u> 1/2 S W <u><</u> 0.2		W <u><</u> 1/2 Seg W <u><</u> 0.2		Ignore
			ACC. NO.	3EA / 100mm	' '			1		0
Minor	Assembly Mis-alignment		1. Segment							
			Е	3	B <u><</u> 0.4mm 0		0.4 <b<u><1.0mm B>1</b<u>		1.0mm	
			B-	A	B-A<1/2B		B-A<0.2 B-A		<0.25	
						Acceptable		Acceptable Acce		eptable
			2. Dot Matrix							
			Deformation>2° Reject							Reject
Minor	Stain on LCD Panel Surface		Accept when stains can be wiped lightly with a soft cloth or a similar one. Otherwise, judged according to the above items: "Black spot" and "White Spot"							

9. RELIABILITY

No	Item	Condition	Quantity	Criteria	
1	High Temperature Operating	70℃, 96Hrs	2	GB/T2423.2 -2008	
2	Low Temperature Operating	-20℃, 96Hrs	2	GB/T2423.1 -2008	
3	High Humidity	60°C, 90%RH, 96Hrs	2	GB/T2423.3 -2006	
4	High Temperature Storage	80°C, 96Hrs	2	GB/T2423.2 -2008	
5	Low Temperature Storage	-30℃, 96Hrs	2	GB/T2423.1 -2008	
6	Thermal Cycling Test	-20°C, 60min~70°C, 60min, 20 cycles.	2	GB/T2423.22 -2012	
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.	2	GB/T5170.14 -2009	
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626.2 -2006	
		Contact: ± 4 KV 150pF/330 Ω 5 times	_		
9	Drop Test(Packaged)	Height: 80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995	

^{*}NOTE:1) Above conditions are suitable for our company standard products.
2) For restrict products, the test conditions listed as above must be revised.

Issued Date:2018-10-08 **Doc.No.:**QP-001-027/B0

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily getdamaged since the Module is fixed by utilizing fitting holesin the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichlorotrifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Ketone
- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. Andground your body, Work/assembly table. Andassembly equipment toprotect against staticelectricity.

(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

(5) Caution for operation

- It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open

Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use. The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.

When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

(8) Other

-After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

24.4±0.3 2.0±0.3r(.A.V)

31 0±0 2

10.25

2.5