	Document Name	P101GWN9M R0 Pro	Page 1 of 18			
ro Vision Ontoelectronics Inc.	Document No.	Made/Revised 2012/11/02 Date			Ver.	00
	Made By	1	Department		Factory Code	00

Contents

1.0 General Descriptions Introduction	2
2.0 Absolute Maximum Ratings	3
3.0 Pixel Format Image	5
4.0 Optical Characteristics	6
5.0 Backlight Characteristics	9
6.0 Electrical Characteristics	10
7.0 Interface Timings	12
8.0 Power Consumption	13
9.0 Power ON/OFF Sequence	13
10.0 Mechanical Characteristics	14
11.0 Package Specification	16
12.0 Lot Mark	16
13.0 General Precaution	16

	Document Name P101GWN9M R0 Product Tentative Specification						
p V O Tro Vision Ontoelectronics Inc.	Document No.	N	Made/Revised 2012/11/02 Date				
	Made By		Department		Factory Code	00	

1.0 General Descriptions Introduction

1.1 Introduction

The M101GWN9 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a backlight system, column driver and row driver circuit. This TFT LCD has a 10.1-inch diagonally measured active display area with WSVGA resolution (1024 horizontal by 600 vertical pixels array).

1.2 Features

- 10.1" TFT LCD Panel
- LED Backlight System
- Supported 1024x600 pixels resolution
- Compatible with RoHS standard

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	10.1	Inch
Active Area	222.72(H) x 125.28(V)	mm
Pixels H x V	1024(RGB) x600	-
Pixel Pitch	0.2175(H) x 0.2088(V)	mm
Pixel Arrangement	RGB Vertical Stripe	-
Display Mode	Normally White	-
White Luminance	500 (Typ.)	cd /m ²
Contrast Ratio	500 : 1 (Typ.)	-
Response Time	TBD	msec
Input Voltage	3.3 (Typ.)	V
Weight	(440) (Max)	g
Outline Dimension	244.0(H) x 143.0(V) x12.4(D) Typ.	mm
Electrical Interface (Logic)	LVDS	-
Support Color	262K	-
Surface Treatment	Anti-glare, Hard-Coating (3H)	-

	Document Name	P101GWN9M R0 P	Product Tentative	e Specification	Page 3	of 18
p V O Tro Vision Ontoelectronics Inc.	Document No.		Made/Revised Date	2012/11/02	Ver.	00
	Made By		Department		Factory Code	00

1.4 Functional Block Diagram

Shows the functional block diagram of the LCD module.

Connector Connector YVCC **Fuse** (20pin) (5pin) VLED VIN LVDS Signal Fuse DC-DC LED-Driver Charge VGL IC **VCOM** Connector XVCC **Control Signal** (8pin) Gamma **CELL**

Figure 1 Block Diagram

2.0 Absolute Maximum Ratings

Table 1 Electrical Absolute Rating

Table 1 Electrical Absolute Nating									
ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK				
Supply Voltage	V	3.0	3.6	V	Logic power supply voltage				
	V_{IN}	8	16	V	LED Driver Vin				
Power Supply Fuse	I _{FUSE}		1.5	۸	Vin from10% \sim 90% , rise				
Current Setting		-	1.5	Α	time 500us				
Input Signal	Vs	-	3.6	V	LVDS signals				
PWM Voltage	V_{PWM}	0.8	5.0	V	PWM Dimming Voltage				

	Document Name P101GWN9M R0 Product Tentative Specification						
PVO to Vision Octoblectronics for	Document No.		Made/Revised 2012/11/02 Date				
To visibil Opioelectionies like.	Made By		Department		Factory Code	00	

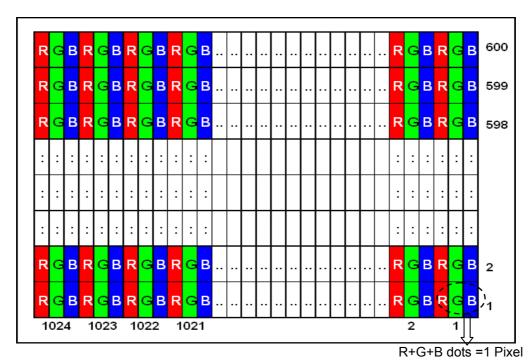
Table 2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	-30	85	$^{\circ}\!\mathbb{C}$	
Operating Humidity	HOP	10	85	%RH	(4) (2)
Storage Temperature	TST	-30	85	$^{\circ}\!\mathbb{C}$	(1),(2)
Storage Humidity	HST	10	95	%RH	
Vibration(non-operating)	VB	-	1.5	G	(3)
Shock(non-operating)	Shock	-	100	G	(4)

Note (1) There is no display function fail occurred, all the cosmetic specification is judged before the reliability stress. The criteria is fit by PVO provided IIS.

- (3) 10-500Hz, random vibration, 30min for X, Y, Z axis
- (4) 6ms, half sine wave, one time for X, Y, Z axis

⁽²⁾ The storage /operating temperature. Maximum Wet-Bulb should be 39 degree C. There is no condensation on the panel surface.


	Document Name	P101GWN9M R0 Pro	P101GWN9M R0 Product Tentative Specification				
p Vision Ontrolectronics Inc.	Document No.	N	Made/Revised Date	2012/11/02	Ver.	00	
- To Volum Opposite Village III.	Made By		Department		Factory Code	00	

3.0 Pixel Format Image

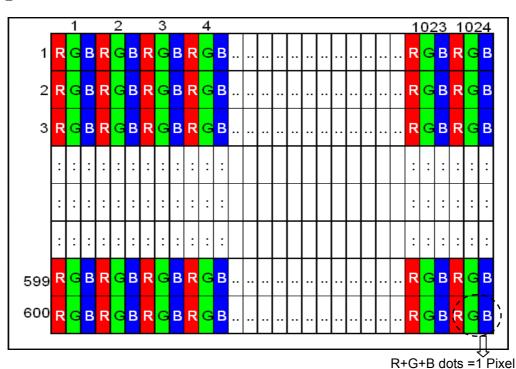

Figure 2 shows the relationship of the input signals and LCD pixel format image.

Figure 2 Pixel Format

REV=H

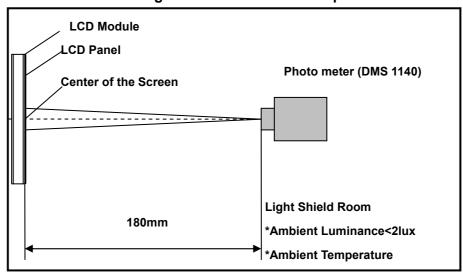
REV=L

	Document Name	P101GWN9M R0 Product Tenta	Page 6 of 18		
PVQ m Vision Ontrolectronics Inc.	Document No.	Made/Revise Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By	Departmen	t	Factory Code	00

4.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes

Table 3 Optical Characteristics

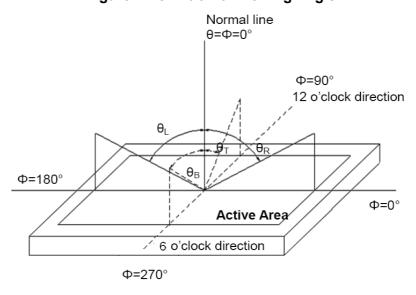

Item	Conditio	ns	Min.	Тур.	Max.	Unit	Note	
	Horizontal	θ∟	(70)	(80)	-		(4) (2) (2)	
Viewing Angle (CR>10)	Horizontal	θR	(70)	(80)	-	degree		
	Vertical	Ө т	(70)	(80)	-	uegree	(1),(2),(3)	
	vertical	θв	(70)	(80)	-			
Contrast Ratio	Center		(400)	(500)	-	-	(1),(2),(4)	
	Rising		-	-	-	ms		
Response Time	Falling		-	-	-	ms	(1),(2),(5)	
	Rising + Falling		-	TBD	-	ms		
	NTSC		-	(45)	-	%	(1),(2)	
	Red x			TBD		-		
	Red y			TBD		-		
Color	Green x		Тур.	TBD	Тур.	-		
Chromaticity	Green y		-0.03	TBD	+0.03	-	(1),(2)	
(CIE1931)	Blue x			TBD		-	(1),(2)	
	Blue y			TBD		-		
	White x		(0.255)	(0.305)	(0.355)	-		
	White y		(0.275)	(0.325)	(0.375)	-		
White Luminance	Center		(400)	(500)	-	cd/m^2	(1),(2),(6)	
Luminance Uniformity	9Points		(75)	(80)	-	%	(1),(2),(6)	

Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature(25°C) for 15 minutes to Avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

	Document Name	P101GWN9M R0 Product Tentativ	Page 7	of 18	
m Vision Ontrolectronics Inc.	Document No.	Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By	Department		Factory Code	00

Figure 3 Measurement Setup


Note (2) The LED input parameter setting as:

VLED: 12V;

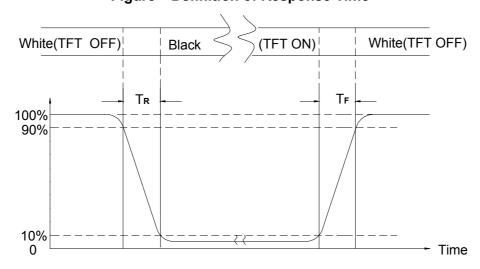
PWM_LED: Duty 100 %

Note (3) Definition of Viewing Angle

Figure 4 Definition of Viewing Angle

Note (4) Definition Of Contrast Ratio (CR)

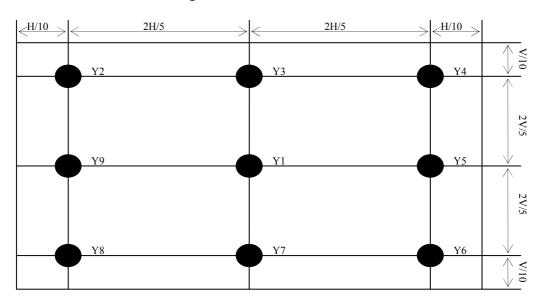
The contrast ratio can be calculated by the following expression


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255, L0: Luminance of gray level 0

		Document Name	P101GWN9M R0 P	P101GWN9M R0 Product Tentative Specification					
	PVO m Vision Ontrelectronics Inc.	Document No.		Made/Revised 2012/11/02 Date					
Ľ	TO VISION OPICECUONES INC.	Made By		Department		Factory Code	00		

Note (5) Definition Of Response Time $(T_R, \, T_F)$


Figure Definition of Response Time

Note (6) Definition Of Brightness Luminance

 $Luminance \ Uniformity = \frac{(MinLuminance of 9 points)}{(MaxLuminance of 9 points)} \times 100\%$

Figure 6 Measurement Locations

	Document Name	P101GWN9M R0 P	roduct Tentative	Specification	Page 9	of 18
PVO no Vision Ontrollectronics Inc.	Document No.		Made/Revised Date	2012/11/02	Ver.	00
TO YOUR OPPOSEDURING III.	Made By				Factory Code	00

5.0 Backlight Characteristics

Table 4 LED driver Input and Output Specifications

ITEM		UNIT	MIN	TYP	MAX	CONDITION
VIN_L	VIN_LED		8	12	16	DUTY=100%
I _{VIN_LE}	ED	mA	-	-	543	
F _{DIM}	I	HZ	100	-	1K	
DUT	Y	%	5		100	
CTRL	VIH	V	2	3.3	5	
	VIL	V	0	-	0.8	
Vou	t	V	-	(22.4)	-	
I _{OUT}	I _{OUT}		-	(160)		
效率		%	(85)			
L _T		Hours	50,000	-	1	LED Life Time

Note: The LED life time define as the estimated time to 50% degradation of initial luminous.

	Document Name	P101GWN9M R0 Produ	ct Tentative	Specification	Page 10	of 18
n Vision Ontrolectronics Inc.	Document No.	Mad	Ver.	00		
- 10 Vision Optication of the	Made By	De	Department		Factory Code	00

6.0 Electrical Characteristics

Table 5 Signal Pin Assignment

Pin#	Signal Name	Description	Remarks
1	VDD	Power Supply, 3.3V (typical)	
2 VDD		Power Supply, 3.3V (typical)	
3	VSS	Ground	
4	REV	Reverse Scan selection	
5	Rin1-	-LVDS differential data input	
6	Rin1+	+LVDS differential data input	
7	VSS	Ground	
8	Rin2-	-LVDS differential data input	
9	Rin2+	+LVDS differential data input	
10	VSS	Ground	
11	Rin3-	-LVDS differential data input	
12	Rin3+	+LVDS differential data input	
13	VSS	Ground	
14	CIkIN-	-LVDS differential clock input	
15	CIkIN+	+LVDS differential clock input	
16	GND	Ground	
17	NC	Not connection	
18	NC	Not connection	
19	VSS	Ground	
20	NC	Not connection	High Active

Table 6 B/L Pin Assignment

Pin#	Signal Name	Description	Remarks					
1	VCC							
2	GND	Ground						
3	EN	3.3V (typical)						
4	PWM	3.3V (typical)						
5	NC	Not Connection						

	Document Name	P101GWN9M R0 F	P101GWN9M R0 Product Tentative Specification					
PVO m Vising Ontroloctronics Inc	Document No.		Made/Revised 2012/11/02 Date					
io visini Opidele Irolies inc.	Made By		Department		Factory Code	00		

Table 7 Electrical Characteristics

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
System Power Supply						
Input Power Supply Voltage	V _{IN}	3.0	3.3	3.6	V	
Input Power Supply Current	I _{VIN}	-	-	153	mA	Black pattern *60Hz
Input Inrush Current	I _{RUSH}	-	-	1.5	A	0.5ms rise time (10%~90%)
Input Power Voltage Ripple	V_{RPL}	-	-	200	mV	Vp-p
REV	VH	2.0	3.3	5.0	V	
KLV	VL	-	-	8.0	V	
LED Power Supply						
Input Power Supply Voltage	V _{LED-IN}	8	12	16	V	
Input Power Supply Current	I _{IN}	-	-	543	mA	
EN/PWM	VH	2.0	3.3	5.0	V	
	VL	-	-	0.8	V	
LVDS Signals						
Differential Input High Threshold	V_{th}	-	-	+100	mV	V _{cm} =+1.2V
Differential Input Low Threshold	V _{tl}	-100	-	-	mV	V _{cm} =+1.2V
Magnitude Differential Input Voltage	$ V_{id} $	200	-	600	mV	
Common Mode Voltage	V _{cm}	1.0	1.2	1.4	V	$V_{th} - V_{tl} = 200 \text{mV}$
Common Mode Voltage Offset	ΔV_{cm}	-50	-	+50	mV	$V_{th} - V_{tl} = 200 \text{mV}$

Note: A. Input signals shall be low or Hi-Z state when VIN is off.

- B. All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.
- C. White Pattern at 3.3V driving voltage.

	Document Name P101GWN9M R0 Product Tentative Specification						
PVO m Vision Ontroloctronics Inc	Document No.	Made/Revised Date	Ver.	00			
io visus opportectories inc.	Made By	Department		Factory Code	00		

7.0 Interface Timings

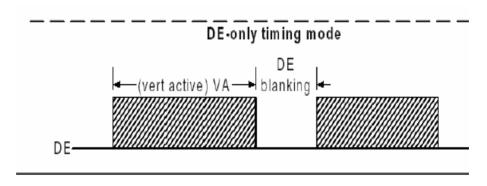

7.1 Timing Characteristics

Table 8 Interface Timings

Synchronization Method: DE only

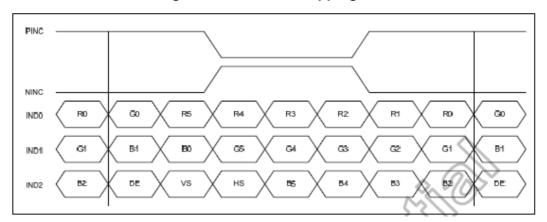

Parameter	Symbol	Unit	Min.	Тур.	Max.
LVDS Clock Frequency <single></single>	f _{dck}	MHz	45	51.2	57
H Total Time	T_{hp}	clocks	1,324	1,344	1,364
H Active Time	HA	clocks	1,024	1,024	1,024
H Blanking Time	TH _{BLANK}	clocks	300	320	340
V Total Time	T_{vp}	lines	625	635	645
V Active Time	VA	lines	600	600	600
V Blanking Time	TV_BLANK	lines	25	35	45
V Frequency	f _v	Hz	55	60	65

Figure 7 DE-only timing mode

7.2 Timing Diagram of Interface Signal

Figure 8 LVDS Data Mapping

	Document Name	P101GWN9M R0 P	roduct Tentative	Specification	Page 1	3 of 18
no Vision Ontoelectronics Inc.	Document No.		Made/Revised 2012/11/02 Date			
	Made By Dep		Department		Factory Code	00

8.0 Power Consumption

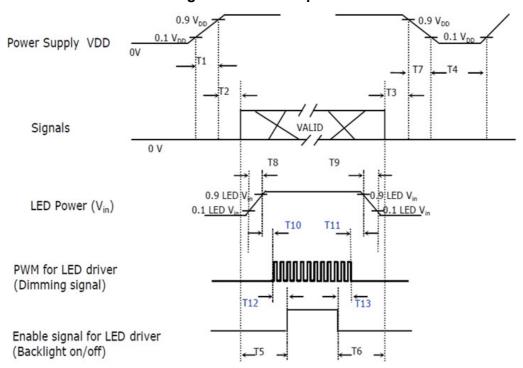

Input power specifications are as follows.

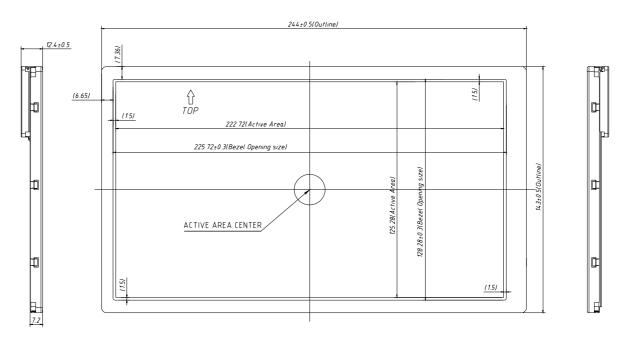
Table 9 Power Consumption

Item	Symbol	Min.	Тур.	Max.	Units	Note
Input Power Supply Voltage	V _{IN}	3.0	3.3	3.6	V	
Input Power Supply Current	I _{VIN}	-	-	153	mA	Black pattern , 60Hz
Input Inrush Current	I _{RUSH}	-	-	1.5	Α	0.5ms rise time (10%~90%)
Input Power Voltage Ripple	V _{RPL}	-	-	200	mV	V p-p

9.0 Power ON/OFF Sequence

Figure 9 Power Sequence

	Document Name	P101GWN9M R0 Pro	Page 14 of 18			
PVO on Vision Ontrelectronics Inc.	Document No.	N	Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By		Department		Factory Code	00


Table 10 Power Sequencing Requirements

Parameter	Symbol	Unit	min	typ	max
VDD rising Time from 10% to 90%	T1	ms	0.5		10
Delay from VDD to valid data at power ON	T2	ms	0		50
Delay from valid data OFF to VDD OFF at power OFF	Т3	ms	0		50
VDD OFF time for Windows restart	T4	ms	500		
Delay from valid data to B/L enable at power ON	T5	ms	200		
Delay from valid data off to B/L disable at power OFF	T6	ms	200		
VDD falling time from 90% to 10%	T7	ms	0		10
LED Vin rising time from 10% to 90%	T8	ms	0.5		10
LED Vin falling time from 90% to 10%	Т9	ms	0.5		10
Delay from LED driver Vin rising time 90% to PWM ON	T10	ms	0		10
Delay from PWM Off to LED Driver Vin falling time	T44				
10%,Must Keep rule	T11	ms	0		
Delay from PWM ON to B/L Enable ON, Must Keep rule	T12	ms	0		
Delay from B/L Enable Off to PWM Off	T13	ms	0		

10.0 Mechanical Characteristics

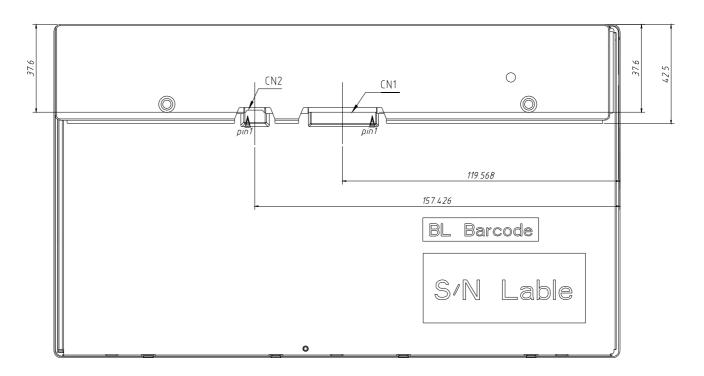

10.1 Outline Drawing

Figure 10 Reference Outline Drawing (Front Side)

	Document Name	P101GWN9M R0 P	Page 15 of 18			
ro Vision Ootoelectronics Inc.	Document No.		Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By		Department		Factory Code	00

Figure 11 Reference Outline Drawing (Back Side)

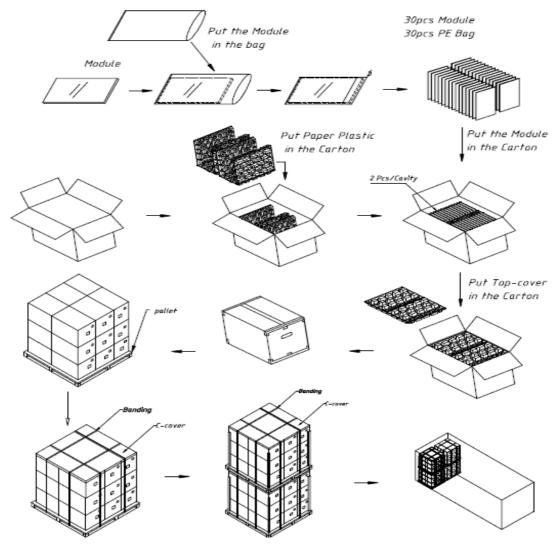

10.2 Dimension Specifications

Table 11 Module Dimension Specifications

Item	Min.	Тур.	Max.	Units
Width	243.5	244	244.5	mm
Height	142.5	143	143.5	mm
Thickness	-	12.4	12.9	mm
Weight	-	(400)	(440)	g

	Document Name	P101GWN9M R0 Product Tentative Specification			Page 16 of 18	
m Vision Ontrolectronics Inc.	Document No.		Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By		Department		Factory Code	00

11.0 Package Specification

12.0 Lot Mark

TBD

13.0 General Precaution

13.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

13.2 Handling Precaution

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. PVO does not warrant the module, if customers disassemble or modify the module.

	Document Name	P101GWN9M R0 P	Page 17 of 18			
no Vision Ontoelectronics Inc.	Document No.		Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By		Department		Factory Code	00

- (3) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid Crystal, and do not contact liquid crystal with skin. If liquid crystal contacts mouth or eyes, rinse out with water immediately. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and Rinse thoroughly with water.
- (4) Disconnect power supply before handling LCD module
- (5) Refrain from strong mechanical shock and /or any force to the module.
- (6) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature; etc otherwise LCD module may be damaged. It's recommended employing protection circuit for power supply.
- (7) Do not touch, push or rub the polarizer with anything harder than HB pencil lead. Use fingerstalls of soft gloves in order to keep clean display quality, when Persons handle the LCD module for incoming inspection or assembly.
- (8) When the surface is dusty, please wipe gently with absorbent cotton or other soft Material. When cleaning the adhesives, please use absorbent cotton wetted with a little Petroleum benzene or other adequate solvent.
- (9) Wipe off saliva or water drops as soon as possible. If saliva or water drops Contact with polarizer for a long time, they may causes deformation or color Fading.
- (10) Protection film must remove very slowly from the surface of LCD module to Prevent from electrostatic occurrence.
- (11) Because LCD module uses CMOS-IC on circuit board and TFT-LCD panel, it is Very weak to electrostatic discharge, Please be careful with electrostatic Discharge .Persons who handle the module should be grounded through adequate methods.
- (12) Do not adjust the variable resistor located on the module.

13.3 Storage Precaution

- (1) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (2) The module shall not be exposed under strong light such as direct sunlight. Otherwise, Display characteristics may be changed.
- (3) The module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storage.

13.4 Operation Precaution

- (1) Do not connect or disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by 9.0 "Power on/off sequence"
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (4) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

13.5 Others

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.

	Document Name	P101GWN9M R0 P	Page 18 of 18			
PVO ra Vision Ontroloctronics Inc	Document No.		Made/Revised Date	2012/11/02	Ver.	00
ro Vision Optoelectronics Inc.	Made By		Department		Factory Code	00

- (1) Ultra-violet ray filter is necessary for outdoor operation.
- (2) Avoid condensation of water which may result in improper operation or disconnection of electrode.
- (3) If the module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen.
- (4) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

13.6 Disposal

When disposing LCD module, obey the local environmental regulations.