

# DATA IMAGE CORPORATION

# **TFT Module Specification**

Preliminary

ITEM NO.: FG040346DSSWBG04

# **Table of Contents**

| 1.  | COVER & CONTENTS ·····             | 1  |
|-----|------------------------------------|----|
| 2.  | RECORD OF REVISION ·····           | 2  |
| 3.  | FEATURE ·····                      | 3  |
| 4.  | GENERAL SPECIFICATIONS ······      | 3  |
| 5.  | ELECTRICAL CHARACTERISTICS ······  | 3  |
| 6.  | BLOCK DIAGRAM ·····                | 4  |
| 7.  | PIN CONNECTIONS ······             | 5  |
| 8.  | AC CHARACTERISTICS ······          | 6  |
| 9.  | OPTICAL CHARACTERISTIC ······      | 9  |
| 10. | TOUCH PANEL CHARACTERISTICS ······ | 11 |
| 11. | QUALITY ASSURANCE ·····            | 12 |
| 12. | LCM PRODUCT LABEL DEFINE ······    | 13 |
| 13. | PRECAUTIONS IN USE LCM             | 15 |
| 14. | OUTLINE DRAWING ·····              | 16 |
| 15. | PACKAGE INFORMATION ·····          | 17 |

| Customer Companies | R&D Dept. | Q.C. Dept.   | Eng. Dept.  | Prod. Dept.  |
|--------------------|-----------|--------------|-------------|--------------|
|                    | JACK      | JOE          | GARY        | KEN          |
| Approved by        | Version:  | Issued Date: | Sheet Code: | Total Pages: |
|                    | 1         | 02/DEC/11'   |             | 17           |



# 2. RECORD OF REVISION

| Rev | Date       | Item | Page | Comment             |
|-----|------------|------|------|---------------------|
| 1   | 02/DEC/11' |      |      | Initial preliminary |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |
|     |            |      |      |                     |



# 3. FEATURE

• 64 gray level with 2 bit dithering function to realize 16M colors

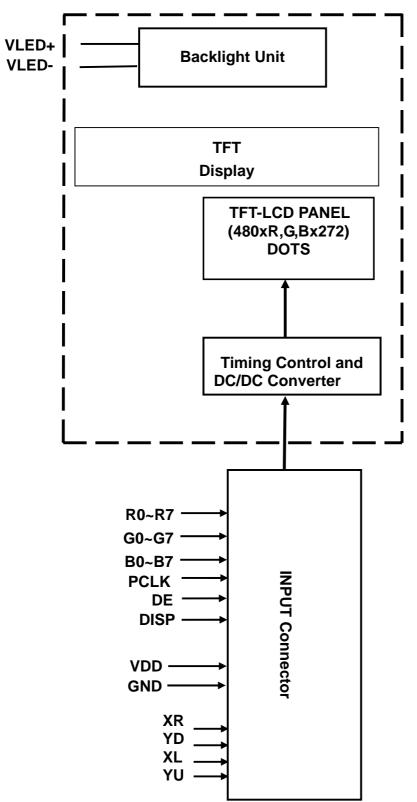
# **4. GENERAL SPECIFICATIONS**

| Parameter                        | Specifications               | Unit |  |  |  |
|----------------------------------|------------------------------|------|--|--|--|
| Display resolution               | 480X R.G.B x 272             | dot  |  |  |  |
| Active area                      | 95.04(W) x 53.856(H)         | mm   |  |  |  |
| Screen size                      | 4.3(Diagonal)                | inch |  |  |  |
| Dot pitch                        | 0.066 (W) x 0.198(H)         | mm   |  |  |  |
| Color configuration              | R.G.B. Stripe                |      |  |  |  |
| Overall dimension                | 105.5 (W) x 67.2(H) x 4.3(D) | mm   |  |  |  |
| Weight                           | 61                           | g    |  |  |  |
| Surface treatment                | Anti-glare, Anti-Smudge      |      |  |  |  |
| View Angle direction 6 o'clock   |                              |      |  |  |  |
| Our components and processes are | e compliant to RoHS standard |      |  |  |  |

# **5. ELECTRICAL CHARACTERISTICS**


|                                    |                    |        |      |        | G     | ND=0V,Ta=25°C         |
|------------------------------------|--------------------|--------|------|--------|-------|-----------------------|
| Parameter                          | Symbol             | MIN.   | Тур. | MAX.   | Unit  | Remark                |
| Power Supply voltage               | V <sub>DD</sub>    | 3.0    | 3.3  | 3.6    | V     | Note1                 |
| Power Supply Current               | I <sub>DD</sub>    |        | 21   | 30     | mA    | V <sub>DD</sub> =3.3V |
| Ripple Voltage                     | V <sub>RPVDD</sub> |        |      | 100    | mVp-p |                       |
| "H" level logical input<br>voltage | V <sub>IH</sub>    | 0.7VDD |      | VDD    | V     |                       |
| "L" level logical input<br>voltage | V <sub>IL</sub>    | 0      |      | 0.3VDD | V     |                       |
| Operating temperature              | Тора               | -20    |      | 70     | °C    | Ambient temperature   |
| Storage temperature                | Tstg               | -30    |      | 80     | °C    | Ambient temperature   |

Note1: VDD Absolute Maximum Ratings -0.3V~+5V


## 5.1 Backlight driving for power conditions

|                    |        |        |        |      | Ta= 2 | 25 °C    |
|--------------------|--------|--------|--------|------|-------|----------|
| Parameter          | Symbol | Min.   | Тур.   | Max. | Unit  | Remark   |
| LED current        | ١L     |        | 20     |      | mA    |          |
| VLED voltage       | VL     | 21     | 23.1   | 25.2 | V     | IL=20 Ma |
| LED dice life time |        | 20,000 | 30,000 |      | Hours | Note 1   |

Note 1: The "LED dice life time" is defined as the brightness decrease to 50% original brightness that the ambient temperature is 25 and LED dice current=20mA









Pin No Symbol Function Remark VLED-LED Power Supply Cathode. 1 2 VLED+ LED Power Supply Anode. 3 NC No Connection VDD Power Supply : +3.3V 4 5 R0 R1 6 7 R2 8 R3 Digital data input. R0 is LSB and R7 is MSB 9 R4 10 R5 11 R6 12 R7 G0 13 G1 14 G2 15 G3 16 Digital data input. G0 is LSB and G7 is MSB 17 G4 18 G5 19 G6 20 G7 B0 21 22 B1 23 B2 B3 24 Digital data input. B0 is LSB and B7 is MSB 25 B4 26 B5 27 B6 28 B7 29 GND Ground PCLK 30 clock signal to sample each data DISP Display ON/OFF Control ON=H(VDD), OFF=L(GND) 31 HSYNC Horizontal synchronous signal or NC 32 VSYNC Vertical synchronous signal or NC 33 34 DE Data enable single No Connection 35 NC 36 GND Ground Touch panel Right 37 XR 38 YD Touch panel Down Touch panel Left 39 XL 40 Touch panel Up YU



# 8. AC CHARACTERISTICS

8.1 Input Timing Requirement (480RGBx272, Ta = 25°C, VCC=3.3V GND= 0V)

| Parameter      | Symbol | Min. | Typ.<br>Value | Max. | Unit |
|----------------|--------|------|---------------|------|------|
| CK frequency   | fclk   | 5    | 9             | 12   | MHz  |
| DE set-up time | Tdesu  | 12   | -             | -    | ns   |
| DE hold time   | Tdehd  | 12   | -             | -    | ns   |

Clock and data input timing

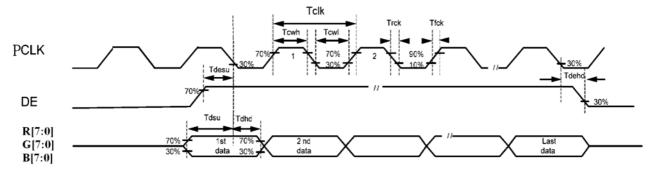



Fig 1. Parallel RGB input timing



8.2 Input Setup Timing Requirement (VCC = 3.0 to 3.6V, GND=0V, TA=-20 to +85 )

| Parameters           | Symbol | Min. | Тур. | Max. | Unit | Conditions |
|----------------------|--------|------|------|------|------|------------|
| CK clock time        | Tclk   | 33.3 | -    | -    | ns   | CK =30MHz  |
| CK clock low period  | Tcwl   | 40   | -    | 60   | %    |            |
| CK clock high period | Tcwh   | 40   | -    | 60   | %    |            |
| Clock rising time    | Trck   | 9    | -    | -    | ns   |            |
| Clock falling time   | Tfck   | 9    | -    | -    | ns   |            |
| Data setup time      | Tdasu  | 12   | -    | -    | ns   |            |
| Data hold time       | Tdahd  | 12   | -    | -    | ns   |            |

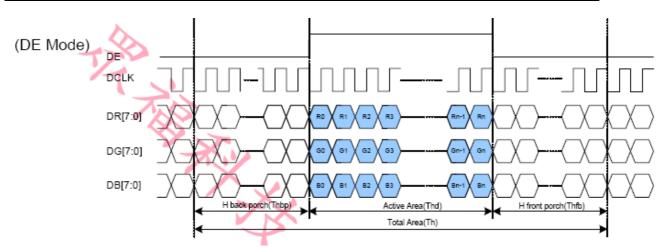
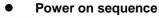
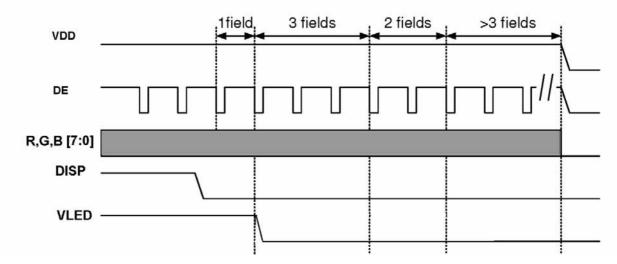
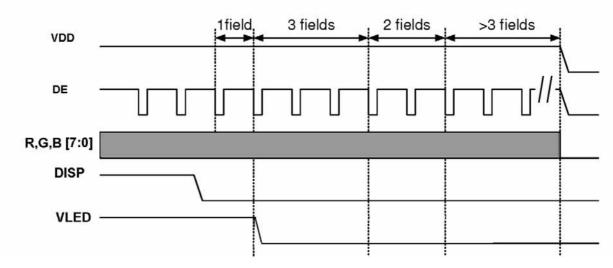





Fig 2. Input setup timing requirement


8.3 Power on/off sequence:





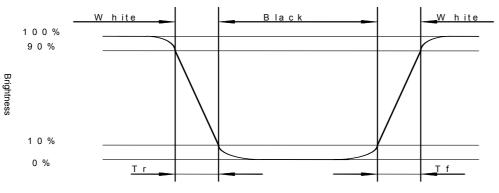


• Power off sequence





| Itei      | m          | Symbol | Condition                     | Min. | Тур. | Max. | Unit  | Remark   |
|-----------|------------|--------|-------------------------------|------|------|------|-------|----------|
| Respons   | se time    | Tr+Tf  | <i>θ=</i> 0°                  | -    | 25   | -    | ms    | Note 4   |
| Contras   | st ratio   | CR     | At optimized<br>viewing angle | 100  | 400  |      |       | Note 5   |
|           | Тор        |        |                               | 40   | 50   | -    |       |          |
| Viewing   | Bottom     |        | CR≥10                         | 60   | 70   | -    | Deg.  | Note 6   |
| angle     | Left       |        | CR210                         | 60   | 70   | -    | Deg.  | NOLE O   |
|           | Right      |        |                               | 60   | 70   | -    |       |          |
| Luminance | e of white |        | 0 <b>0</b> °                  | 250  | 320  |      | cd/m2 | Note 7,8 |
| Unifor    | mity       |        | θ= <b>0</b> °                 | 70   |      |      | %     | Note 8,9 |
| White     |            | Х      | θ= <b>0</b> °                 | 0.27 | 0.32 | 0.37 |       | Note 7   |
| chroma    | aticity    | у      | 0-0                           | 0.28 | 0.33 | 0.38 |       | NOLE /   |


Note 1: Ambient temperature =25°C. LED current  $I_L$ = 20 mA.

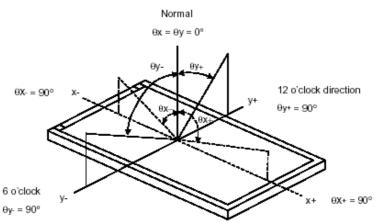
Note 2: To be measured in the dark room.

Note 3: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-7A, after 2 minutes operation.

Note 4: Definition of response time:

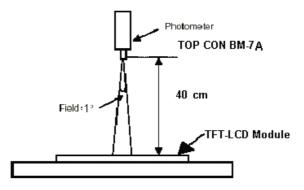
The output signals of photo-detector are measured when the input signals are changed from "white" to "black" (rising time) and from "black" to "white" (falling time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as shown below.



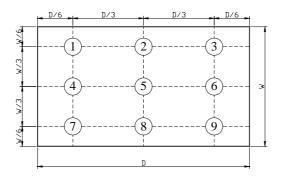

Note5: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= Photo-detector output when LCD is at "White" state


Photo-detector output when LCD is at "Black" state






Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note8: The method of optical measurement



Note 9: Definition of Brightness Uniformity (B-uni):



B-uni = Minimum luminance of 9 points Maximum luminance of 9points



## **10.TOUCH PANEL CHARACTERISTICS**

## 1.Input Method and Activation Force

| Input Method               | Average Activation Force |
|----------------------------|--------------------------|
| 1.6mm dia. Delrin stylus   | 60g Max.                 |
| 16mm dia .Silicon "finger" | 60g Max.                 |

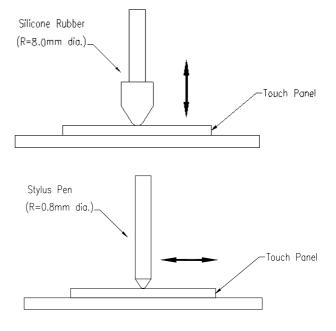
### 2. Typical Optical Characteristics

| ITEM                       | Parameter |
|----------------------------|-----------|
| Visible Light Transmission | 82% typ.  |
| Haze                       | 7% typ    |

#### 3. Electrical Specification

| ITEM                     |   | Parameter                      |
|--------------------------|---|--------------------------------|
| Operating Voltage        |   | Dc 7V Max.                     |
| Contact current          |   | According to individual design |
| Circuit close resistance | Х | 350Ω~1300Ω                     |
|                          | Y | 70Ω~800Ω                       |
| Circuit open resistance  |   | ≥20MΩ at DC25V                 |
| Contact bounce           |   | 20ms Max.                      |
| Linear Test              |   | <1.5%                          |
| Capacitance              |   | <100nF                         |

#### 4. Linearity


| ITEM                                |                        | Parameter |       |
|-------------------------------------|------------------------|-----------|-------|
| Linear Test Specification Directior | posification Direction | Х         | <1.5% |
|                                     |                        | Y         | <1.5% |

## 5. Specification

| ÎTEM                  | Parameter   |
|-----------------------|-------------|
| Operating Temperature | -20°C~+70°C |
| Storage Temperature   | -30°C~+80°C |

## 6. Durability test:

- 6.1 Touch panel is hit 1 millions times with a silicone rubber of R8 finger, hitting rate is by 250g at 2 times per second. The measurement must satisfy the following:
- Circuit close resistance: x 350Ω~1300Ω;
  - y 70Ω~800Ω
- Circuit open resistance:  $\geq$ 20M $\Omega$  at DC25V
- Contact bounce: <20ms
- Linearity test: <3%</li>
- 6.2 Stylus writing
  - Touch panel is drawn by R0.8 Delrin stylus pen, at 150g forces, repeat one inch by 100k times. The measurement must satisfy the following:
- Circuit close resistance: x 350Ω~1300Ω;
  - y 70Ω~800Ω
- Circuit open resistance: ≥20MΩ at DC25V
- Contact bounce: <20ms
- Linearity test: <3%





# 11.1.1 Temperature and Humidity(Ambient Temperature)

| Temperature | : | $25 \pm 5^{\circ}C$   |
|-------------|---|-----------------------|
| Humidity    | : | $65 \pm \mathbf{5\%}$ |

# 11.1.2 Operation

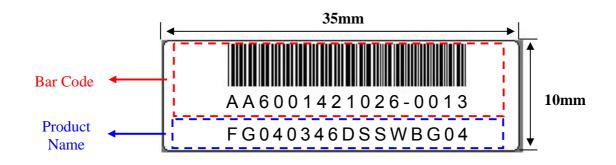
Unless specified otherwise, test will be conducted under function state.

## 11.1.3 Container

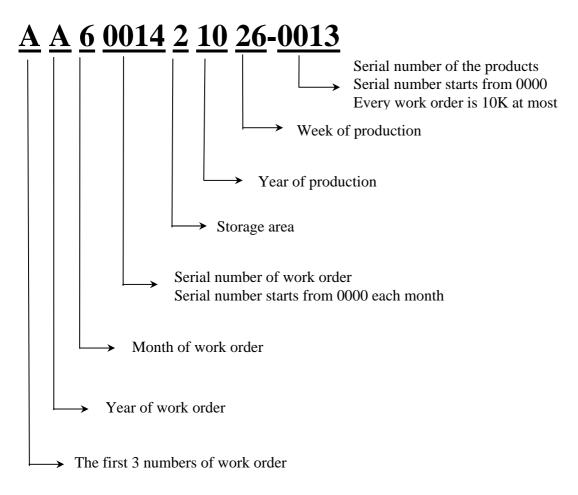
Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

## 11.1.4 Test Frequency

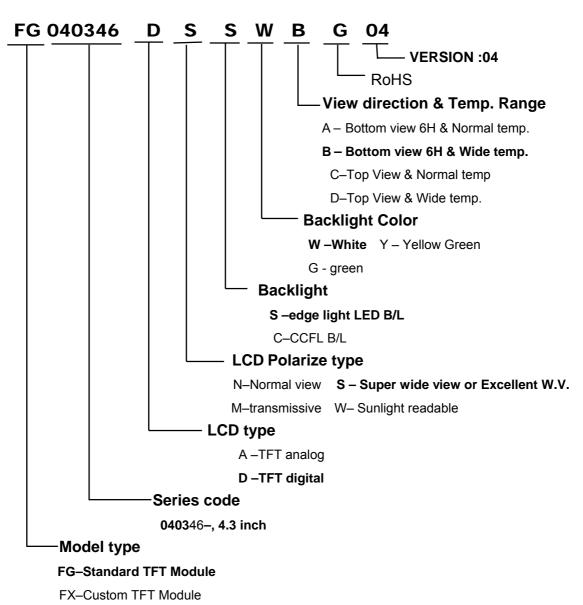
In case of related to deterioration such as shock test. It will be conducted only once.


# 11.1.5 Test Method

| No. | Reliability Test Item & Level                        | Test Level                                                                                                      |  |  |
|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| 1   | High Temperature Storage Test                        | T=80°C,240hrs                                                                                                   |  |  |
| 2   | Low Temperature Storage Test                         | T=-30°C,240hrs                                                                                                  |  |  |
| 3   | High Temperature Operation Test                      | T=70°C,240hrs                                                                                                   |  |  |
| 4   | Low Temperature Operation Test                       | T=-20°C,240hrs                                                                                                  |  |  |
| 5   | High Temperature and High<br>Humidity Operation Test | T=60°C,90% RH,240hrs                                                                                            |  |  |
| 6   | Thermal Cycling Test<br>(No operation)               | $-30^{\circ}C \rightarrow +25^{\circ}C \rightarrow +80^{\circ}C,200$ Cycles<br>30 min 5min 30 min               |  |  |
| 7   | Vibration Test<br>(No operation)                     | Frequency:0 ~ 55 Hz Amplitude:1.5 mm<br>Sweep Time:11min<br>Test Period:6 Cycles for each Direction of<br>X,Y,Z |  |  |
| 8   | Electrostatic Discharge Test<br>(No operation)       | 150pF,330Ω<br>Air:± 15KV;Contact: ± 8KV<br>10 times/point;4 points/panel face                                   |  |  |




# **12. LCM PRODUCT LABEL DEFINE**


**Product Label style:** 



**BarCode Define:** 









#### 1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,

(1). Keep the temperature within range of use and storage.  $\Sigma$ 

Excessive temperature and humidity could cause polarization degredation, polarizer peel off or bubble.

(2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.

(3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.

(4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.

(5). Do not drive LCD with DC voltage.

#### 2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.

(1). Do not tamper in any way with the tabs on the metal frame.(2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.

(3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).

(4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting . Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.

(5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

#### 2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

(1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.

(2). The modules should be kept in antistatic bags or other containers resistant to static for storage.

(3). Only properly grounded soldering irons should be used.

(4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

**Confidential Document** 

(5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.(6). Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

2.3 Soldering

(1). Solder only to the I/O terminals.

(2). Use only soldering irons with proper grounding and no leakage.

(3). Soldering temperature :  $280^{\circ}C \pm 10^{\circ}C$ 

(4). Soldering time: 3 to 4 sec.

(5). Use eutectic solder with resin flux fill.

(6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

#### 2.4 Operation

(1). The viewing angle can be adjusted by varying the LCD driving voltage V0.

(2). Driving voltage should be kept within specified range; excess voltage shortens display life.(3). Response time increases with decrease in temperature.

(4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".

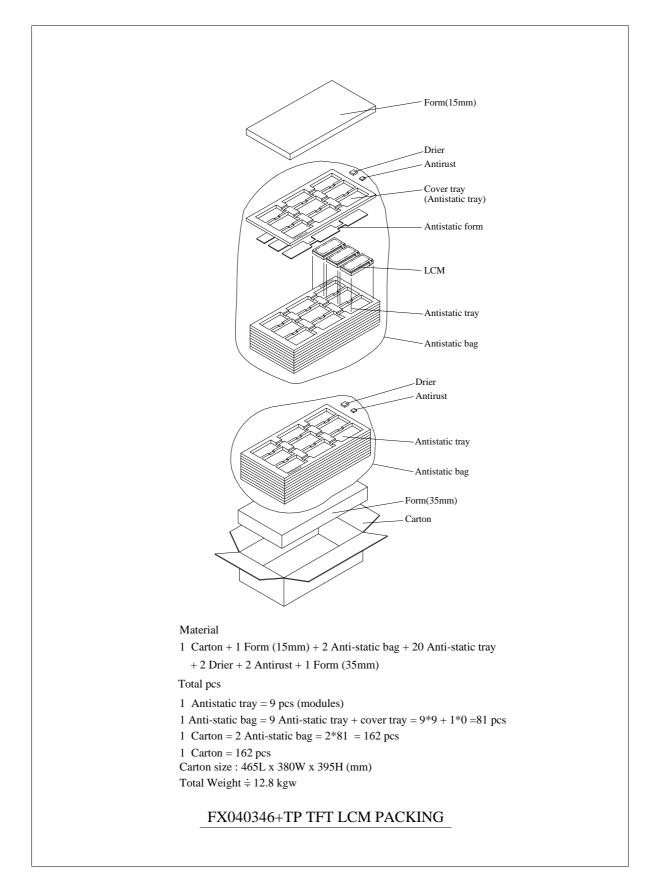
(5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

#### 2.5 Storage

If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

#### 2.6 Limited Warranty

Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.




Confidential Document 14. OUTLINE DRAWING





# **15.PACKAGE INFORMATION**

